50 lines
		
	
	
		
			1.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
		
		
			
		
	
	
			50 lines
		
	
	
		
			1.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| 
								 | 
							
								from opencompass.openicl.icl_prompt_template import PromptTemplate
							 | 
						||
| 
								 | 
							
								from opencompass.openicl.icl_retriever import ZeroRetriever
							 | 
						||
| 
								 | 
							
								from opencompass.openicl.icl_inferencer import PPLInferencer
							 | 
						||
| 
								 | 
							
								from opencompass.openicl.icl_evaluator import AccEvaluator
							 | 
						||
| 
								 | 
							
								from opencompass.datasets import HFDataset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								COPA_reader_cfg = dict(
							 | 
						||
| 
								 | 
							
								    input_columns=["question", "premise", "choice1", "choice2"],
							 | 
						||
| 
								 | 
							
								    output_column="label",
							 | 
						||
| 
								 | 
							
								    test_split="train")
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								COPA_infer_cfg = dict(
							 | 
						||
| 
								 | 
							
								    prompt_template=dict(
							 | 
						||
| 
								 | 
							
								        type=PromptTemplate,
							 | 
						||
| 
								 | 
							
								        template={
							 | 
						||
| 
								 | 
							
								            0:
							 | 
						||
| 
								 | 
							
								            dict(round=[
							 | 
						||
| 
								 | 
							
								                dict(
							 | 
						||
| 
								 | 
							
								                    role="HUMAN",
							 | 
						||
| 
								 | 
							
								                    prompt="{premise}\nQuestion: What may be the {question}?\nAnswer:"),
							 | 
						||
| 
								 | 
							
								                dict(role="BOT", prompt="{choice1}"),
							 | 
						||
| 
								 | 
							
								            ]),
							 | 
						||
| 
								 | 
							
								            1:
							 | 
						||
| 
								 | 
							
								            dict(round=[
							 | 
						||
| 
								 | 
							
								                dict(
							 | 
						||
| 
								 | 
							
								                    role="HUMAN",
							 | 
						||
| 
								 | 
							
								                    prompt="{premise}\nQuestion: What may be the {question}?\nAnswer:"),
							 | 
						||
| 
								 | 
							
								                dict(role="BOT", prompt="{choice2}"),
							 | 
						||
| 
								 | 
							
								            ]),
							 | 
						||
| 
								 | 
							
								        },
							 | 
						||
| 
								 | 
							
								    ),
							 | 
						||
| 
								 | 
							
								    retriever=dict(type=ZeroRetriever),
							 | 
						||
| 
								 | 
							
								    inferencer=dict(type=PPLInferencer),
							 | 
						||
| 
								 | 
							
								)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								COPA_eval_cfg = dict(evaluator=dict(type=AccEvaluator))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								COPA_datasets = [
							 | 
						||
| 
								 | 
							
								    dict(
							 | 
						||
| 
								 | 
							
								        type=HFDataset,
							 | 
						||
| 
								 | 
							
								        abbr="COPA",
							 | 
						||
| 
								 | 
							
								        path="json",
							 | 
						||
| 
								 | 
							
								        data_files="./data/SuperGLUE/COPA/val.jsonl",
							 | 
						||
| 
								 | 
							
								        split="train",
							 | 
						||
| 
								 | 
							
								        reader_cfg=COPA_reader_cfg,
							 | 
						||
| 
								 | 
							
								        infer_cfg=COPA_infer_cfg,
							 | 
						||
| 
								 | 
							
								        eval_cfg=COPA_eval_cfg,
							 | 
						||
| 
								 | 
							
								    )
							 | 
						||
| 
								 | 
							
								]
							 |