44 lines
		
	
	
		
			1.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
		
		
			
		
	
	
			44 lines
		
	
	
		
			1.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| 
								 | 
							
								from opencompass.openicl.icl_prompt_template import PromptTemplate
							 | 
						||
| 
								 | 
							
								from opencompass.openicl.icl_retriever import ZeroRetriever
							 | 
						||
| 
								 | 
							
								from opencompass.openicl.icl_inferencer import GenInferencer
							 | 
						||
| 
								 | 
							
								from opencompass.openicl.icl_evaluator import EMEvaluator, RougeEvaluator, SquadEvaluator
							 | 
						||
| 
								 | 
							
								from opencompass.datasets.leval import LEvalGPTEvaluator, LEvalNaturalQuestionDataset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								LEval_nq_reader_cfg = dict(
							 | 
						||
| 
								 | 
							
								    input_columns=['context', 'question', 'length'],
							 | 
						||
| 
								 | 
							
								    output_column='answer',
							 | 
						||
| 
								 | 
							
								    train_split='test',
							 | 
						||
| 
								 | 
							
								    test_split='test'
							 | 
						||
| 
								 | 
							
								)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								LEval_nq_infer_cfg = dict(
							 | 
						||
| 
								 | 
							
								    prompt_template=dict(
							 | 
						||
| 
								 | 
							
								        type=PromptTemplate,
							 | 
						||
| 
								 | 
							
								        template=dict(
							 | 
						||
| 
								 | 
							
								            begin=[
							 | 
						||
| 
								 | 
							
								                dict(role='SYSTEM', fallback_role='HUMAN', prompt='Now you are given a very long document. Please follow the instruction after this document. These instructions may include summarizing a document, answering questions based on the document, or writing a required paragraph.'),
							 | 
						||
| 
								 | 
							
								            ],
							 | 
						||
| 
								 | 
							
								            round=[
							 | 
						||
| 
								 | 
							
								                dict(role='HUMAN', prompt='Document is as follows. {context}\nInstruction: {question}?\nAnswer this question with {length} words.'),
							 | 
						||
| 
								 | 
							
								                dict(role='BOT', prompt=''),
							 | 
						||
| 
								 | 
							
								            ], )),
							 | 
						||
| 
								 | 
							
								    retriever=dict(type=ZeroRetriever),
							 | 
						||
| 
								 | 
							
								    inferencer=dict(type=GenInferencer, max_out_len=50)
							 | 
						||
| 
								 | 
							
								)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								LEval_nq_eval_cfg = dict(
							 | 
						||
| 
								 | 
							
								    evaluator=dict(type=LEvalGPTEvaluator), 
							 | 
						||
| 
								 | 
							
								    pred_role='BOT'
							 | 
						||
| 
								 | 
							
								)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								LEval_nq_datasets = [
							 | 
						||
| 
								 | 
							
								    dict(
							 | 
						||
| 
								 | 
							
								        type=LEvalNaturalQuestionDataset,
							 | 
						||
| 
								 | 
							
								        abbr='LEval_nq',
							 | 
						||
| 
								 | 
							
								        path='L4NLP/LEval',
							 | 
						||
| 
								 | 
							
								        name='natural_question',
							 | 
						||
| 
								 | 
							
								        reader_cfg=LEval_nq_reader_cfg,
							 | 
						||
| 
								 | 
							
								        infer_cfg=LEval_nq_infer_cfg,
							 | 
						||
| 
								 | 
							
								        eval_cfg=LEval_nq_eval_cfg)
							 | 
						||
| 
								 | 
							
								]
							 |