64 lines
		
	
	
		
			2.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
		
		
			
		
	
	
			64 lines
		
	
	
		
			2.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| 
								 | 
							
								from opencompass.multimodal.models.minigpt_4 import MiniGPT4SEEDBenchPromptConstructor  # noqa
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								# dataloader settings
							 | 
						||
| 
								 | 
							
								image_pipeline = [
							 | 
						||
| 
								 | 
							
								    dict(type='mmpretrain.torchvision/Resize',
							 | 
						||
| 
								 | 
							
								         size=(224, 224),
							 | 
						||
| 
								 | 
							
								         interpolation=3),
							 | 
						||
| 
								 | 
							
								    dict(type='mmpretrain.torchvision/ToTensor'),
							 | 
						||
| 
								 | 
							
								    dict(type='mmpretrain.torchvision/Normalize',
							 | 
						||
| 
								 | 
							
								         mean=(0.48145466, 0.4578275, 0.40821073),
							 | 
						||
| 
								 | 
							
								         std=(0.26862954, 0.26130258, 0.27577711)),
							 | 
						||
| 
								 | 
							
								    dict(type='mmpretrain.PackInputs',
							 | 
						||
| 
								 | 
							
								         algorithm_keys=[
							 | 
						||
| 
								 | 
							
								             'question', 'answer', 'choices', 'data_type', 'question_type_id',
							 | 
						||
| 
								 | 
							
								             'index', 'data_path', 'question_id'
							 | 
						||
| 
								 | 
							
								         ])
							 | 
						||
| 
								 | 
							
								]
							 | 
						||
| 
								 | 
							
								video_pipeline = [
							 | 
						||
| 
								 | 
							
								    dict(type='mmaction.Resize', scale=(224, 224), interpolation='bicubic'),
							 | 
						||
| 
								 | 
							
								    dict(type='mmaction.CenterCrop', crop_size=224),
							 | 
						||
| 
								 | 
							
								    dict(type='Normalize',
							 | 
						||
| 
								 | 
							
								         mean=(0.48145466, 0.4578275, 0.40821073),
							 | 
						||
| 
								 | 
							
								         std=(0.26862954, 0.26130258, 0.27577711)),
							 | 
						||
| 
								 | 
							
								    dict(type='mmpretrain.PackInputs',
							 | 
						||
| 
								 | 
							
								         algorithm_keys=[
							 | 
						||
| 
								 | 
							
								             'question', 'answer', 'choices', 'data_type', 'question_type_id',
							 | 
						||
| 
								 | 
							
								             'index', 'data_path', 'question_id'
							 | 
						||
| 
								 | 
							
								         ])
							 | 
						||
| 
								 | 
							
								]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								dataset = dict(
							 | 
						||
| 
								 | 
							
								    type='opencompass.SEEDBenchDataset',
							 | 
						||
| 
								 | 
							
								    ann_file='data/seedbench/SEED-Bench.json',
							 | 
						||
| 
								 | 
							
								    cc3m_path='data/seedbench/SEED-Bench-image',
							 | 
						||
| 
								 | 
							
								    sthv2_path='data/seedbench/sthv2/videos',
							 | 
						||
| 
								 | 
							
								    epic_kitchens_path='data/seedbench/3h91syskeag572hl6tvuovwv4d/videos/test',
							 | 
						||
| 
								 | 
							
								    breakfast_path='data/seedbench/BreakfastII_15fps_qvga_sync',
							 | 
						||
| 
								 | 
							
								    image_pipeline=image_pipeline,
							 | 
						||
| 
								 | 
							
								    video_pipeline=video_pipeline,
							 | 
						||
| 
								 | 
							
								    only_image=True)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								minigpt_4_seedbench_dataloader = dict(batch_size=1,
							 | 
						||
| 
								 | 
							
								                                      num_workers=4,
							 | 
						||
| 
								 | 
							
								                                      dataset=dataset,
							 | 
						||
| 
								 | 
							
								                                      collate_fn=dict(type='pseudo_collate'),
							 | 
						||
| 
								 | 
							
								                                      sampler=dict(type='DefaultSampler',
							 | 
						||
| 
								 | 
							
								                                                   shuffle=False))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								# model settings
							 | 
						||
| 
								 | 
							
								minigpt_4_seedbench_model = dict(
							 | 
						||
| 
								 | 
							
								    type='minigpt-4',
							 | 
						||
| 
								 | 
							
								    low_resource=False,
							 | 
						||
| 
								 | 
							
								    llama_model='/path/to/vicuna/',
							 | 
						||
| 
								 | 
							
								    prompt_constructor=dict(type=MiniGPT4SEEDBenchPromptConstructor,
							 | 
						||
| 
								 | 
							
								                            image_prompt='###Human: <Img><ImageHere></Img>',
							 | 
						||
| 
								 | 
							
								                            reply_prompt='###Assistant:'),
							 | 
						||
| 
								 | 
							
								    post_processor=None,
							 | 
						||
| 
								 | 
							
								    mode='loss')
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								# evaluation settings
							 | 
						||
| 
								 | 
							
								minigpt_4_seedbench_evaluator = [dict(type='opencompass.SEEDBenchAcc')]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								minigpt_4_load_from = '/path/to/prerained_minigpt4_7b.pth'
							 |