123 lines
		
	
	
		
			4.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
		
		
			
		
	
	
			123 lines
		
	
	
		
			4.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| 
								 | 
							
								from typing import List
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								from mmpretrain.structures import DataSample
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class InstructBlipMMBenchPromptConstructor:
							 | 
						||
| 
								 | 
							
								    """Prompt constructor for InstructBlip on MMBench.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Args:
							 | 
						||
| 
								 | 
							
								        image_prompt (str): Image prompt.
							 | 
						||
| 
								 | 
							
								        reply_prompt (str): Reply prompt.
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def __init__(self, image_prompt: str = '', reply_prompt: str = '') -> None:
							 | 
						||
| 
								 | 
							
								        self.image_prompt = image_prompt
							 | 
						||
| 
								 | 
							
								        self.reply_prompt = reply_prompt
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def __call__(self, inputs: dict) -> dict:
							 | 
						||
| 
								 | 
							
								        """Construct prompt.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        Args:
							 | 
						||
| 
								 | 
							
								            inputs (dict): Input data containing image and data_samples.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        Returns:
							 | 
						||
| 
								 | 
							
								            dict: A dict containing prompt, images and data_samples.
							 | 
						||
| 
								 | 
							
								        """
							 | 
						||
| 
								 | 
							
								        data_samples = inputs['data_samples']
							 | 
						||
| 
								 | 
							
								        prompt = self._process(data_samples)
							 | 
						||
| 
								 | 
							
								        inputs.update({'prompt': prompt})
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        return inputs
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def _process(self, data_samples: List[DataSample]) -> str:
							 | 
						||
| 
								 | 
							
								        """Process data sample to prompt.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        Args:
							 | 
						||
| 
								 | 
							
								            data_samples (List[DataSample]): A list of data_samples.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        Returns:
							 | 
						||
| 
								 | 
							
								            str: Prompt.
							 | 
						||
| 
								 | 
							
								        """
							 | 
						||
| 
								 | 
							
								        assert len(data_samples) == 1, 'Only support batch size 1.'
							 | 
						||
| 
								 | 
							
								        questions = [
							 | 
						||
| 
								 | 
							
								            data_sample.get('question') for data_sample in data_samples
							 | 
						||
| 
								 | 
							
								        ]
							 | 
						||
| 
								 | 
							
								        options = [data_sample.get('options') for data_sample in data_samples]
							 | 
						||
| 
								 | 
							
								        contexts = [data_sample.get('context') for data_sample in data_samples]
							 | 
						||
| 
								 | 
							
								        question = questions[0]
							 | 
						||
| 
								 | 
							
								        option = options[0]
							 | 
						||
| 
								 | 
							
								        context = contexts[0]
							 | 
						||
| 
								 | 
							
								        if context is not None:
							 | 
						||
| 
								 | 
							
								            prompt = self.image_prompt + ' ' + context + ' ' + question + ' ' + option + ' ' + self.reply_prompt  # noqa
							 | 
						||
| 
								 | 
							
								        else:
							 | 
						||
| 
								 | 
							
								            prompt = self.image_prompt + ' ' + question + ' ' + option + ' ' + self.reply_prompt  # noqa
							 | 
						||
| 
								 | 
							
								        return prompt
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class InstructBlipCOCOCaotionPromptConstructor(
							 | 
						||
| 
								 | 
							
								        InstructBlipMMBenchPromptConstructor):
							 | 
						||
| 
								 | 
							
								    """Prompt constructor for InstructBlip on COCO Caption."""
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def _process(self, data_samples: List[DataSample]) -> str:
							 | 
						||
| 
								 | 
							
								        assert len(data_samples) == 1, 'Only support batch size 1.'
							 | 
						||
| 
								 | 
							
								        prompt = self.image_prompt + ' ' + 'a photo of' + self.reply_prompt
							 | 
						||
| 
								 | 
							
								        return prompt
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class InstructBlipVQAPromptConstructor(InstructBlipMMBenchPromptConstructor):
							 | 
						||
| 
								 | 
							
								    """Prompt constructor for InstructBlip on VQA."""
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def _process(self, data_samples: List[DataSample]) -> str:
							 | 
						||
| 
								 | 
							
								        assert len(data_samples) == 1, 'Only support batch size 1.'
							 | 
						||
| 
								 | 
							
								        questions = [
							 | 
						||
| 
								 | 
							
								            data_sample.get('question') for data_sample in data_samples
							 | 
						||
| 
								 | 
							
								        ]
							 | 
						||
| 
								 | 
							
								        question = questions[0]
							 | 
						||
| 
								 | 
							
								        prompt = self.image_prompt + ' ' + question + ' ' + 'Answer this question in a single word.' + ' ' + self.reply_prompt  # noqa
							 | 
						||
| 
								 | 
							
								        return prompt
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class InstructBlipScienceQAPromptConstructor(
							 | 
						||
| 
								 | 
							
								        InstructBlipMMBenchPromptConstructor):
							 | 
						||
| 
								 | 
							
								    """Prompt constructor for InstructBlip on ScienceQA."""
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    choice_mapping = {0: 'A', 1: 'B', 2: 'C', 3: 'D', 4: 'E', 5: 'F'}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def _process(self, data_samples: List[DataSample]) -> str:
							 | 
						||
| 
								 | 
							
								        assert len(data_samples) == 1, 'Only support batch size 1.'
							 | 
						||
| 
								 | 
							
								        questions = [
							 | 
						||
| 
								 | 
							
								            'Question: ' + data_sample.get('question') + '\n'
							 | 
						||
| 
								 | 
							
								            for data_sample in data_samples
							 | 
						||
| 
								 | 
							
								        ]  # noqa
							 | 
						||
| 
								 | 
							
								        choices = [data_sample.get('choices') for data_sample in data_samples]
							 | 
						||
| 
								 | 
							
								        choices = [[
							 | 
						||
| 
								 | 
							
								            f'({self.choice_mapping[i]}) ' + item
							 | 
						||
| 
								 | 
							
								            for i, item in enumerate(choice)
							 | 
						||
| 
								 | 
							
								        ] for choice in choices]
							 | 
						||
| 
								 | 
							
								        choices = [
							 | 
						||
| 
								 | 
							
								            'Choices: ' + ' '.join(choice) + '\n' for choice in choices
							 | 
						||
| 
								 | 
							
								        ]  # noqa
							 | 
						||
| 
								 | 
							
								        contexts = [
							 | 
						||
| 
								 | 
							
								            'Context: ' + data_sample.get('hint') + '\n'
							 | 
						||
| 
								 | 
							
								            for data_sample in data_samples
							 | 
						||
| 
								 | 
							
								        ]  # noqa
							 | 
						||
| 
								 | 
							
								        question = questions[0]
							 | 
						||
| 
								 | 
							
								        choice = choices[0]
							 | 
						||
| 
								 | 
							
								        context = contexts[0]
							 | 
						||
| 
								 | 
							
								        prompt = self.image_prompt + ' ' + context + ' ' + question + ' ' + choice + self.reply_prompt + ' ' + 'The answer is'  # noqa
							 | 
						||
| 
								 | 
							
								        return prompt
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class InstructBlipVSRPromptConstructor(InstructBlipMMBenchPromptConstructor):
							 | 
						||
| 
								 | 
							
								    """Prompt constructor for InstructBlip on VSR."""
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def _process(self, data_samples: List[DataSample]) -> str:
							 | 
						||
| 
								 | 
							
								        assert len(data_samples) == 1, 'Only support batch size 1.'
							 | 
						||
| 
								 | 
							
								        questions = [
							 | 
						||
| 
								 | 
							
								            data_sample.get('question') for data_sample in data_samples
							 | 
						||
| 
								 | 
							
								        ]
							 | 
						||
| 
								 | 
							
								        question = questions[0]
							 | 
						||
| 
								 | 
							
								        prompt = self.image_prompt + ' ' + question + ' ' + 'Is the above description correct? Answer yes or no.' + ' ' + self.reply_prompt  # noqa
							 | 
						||
| 
								 | 
							
								        return prompt
							 |