143 lines
		
	
	
		
			4.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
		
		
			
		
	
	
			143 lines
		
	
	
		
			4.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| 
								 | 
							
								import random
							 | 
						||
| 
								 | 
							
								import re
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								import torch
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class MiniGPT4MMBenchPostProcessor:
							 | 
						||
| 
								 | 
							
								    """"Post processor for MiniGPT-4 on MMBench."""
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def __init__(self) -> None:
							 | 
						||
| 
								 | 
							
								        pass
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def __call__(self, output_token: torch.tensor, tokenizer) -> str:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        if output_token[0] == 0:
							 | 
						||
| 
								 | 
							
								            output_token = output_token[1:]
							 | 
						||
| 
								 | 
							
								        if output_token[0] == 1:
							 | 
						||
| 
								 | 
							
								            output_token = output_token[1:]
							 | 
						||
| 
								 | 
							
								        output_text = tokenizer.decode(output_token,
							 | 
						||
| 
								 | 
							
								                                       add_special_tokens=False)  # noqa
							 | 
						||
| 
								 | 
							
								        output_text = self._extract_key_words(output_text)
							 | 
						||
| 
								 | 
							
								        return output_text
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def _extract_key_words(self, output_text: str) -> str:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        output_text = output_text.split('###')[0]
							 | 
						||
| 
								 | 
							
								        output_text = output_text.split('Assistant:')[-1].strip()
							 | 
						||
| 
								 | 
							
								        output_text = output_text.strip('</s><s>')
							 | 
						||
| 
								 | 
							
								        output_text = output_text.strip('</Img>')
							 | 
						||
| 
								 | 
							
								        output_text = output_text.strip()
							 | 
						||
| 
								 | 
							
								        pattern = re.compile(r'([A-Z]\.)')
							 | 
						||
| 
								 | 
							
								        res = pattern.findall(output_text)
							 | 
						||
| 
								 | 
							
								        if len(res) > 0:
							 | 
						||
| 
								 | 
							
								            output_text = res[0][:-1]
							 | 
						||
| 
								 | 
							
								        return output_text
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class MiniGPT4COCOCaptionPostProcessor:
							 | 
						||
| 
								 | 
							
								    """"Post processor for MiniGPT-4 on COCO Caption."""
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def __init__(self) -> None:
							 | 
						||
| 
								 | 
							
								        pass
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def __call__(self, output_token: torch.tensor, tokenizer) -> str:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        if output_token[0] == 0:
							 | 
						||
| 
								 | 
							
								            output_token = output_token[1:]
							 | 
						||
| 
								 | 
							
								        if output_token[0] == 1:
							 | 
						||
| 
								 | 
							
								            output_token = output_token[1:]
							 | 
						||
| 
								 | 
							
								        output_text = tokenizer.decode(output_token,
							 | 
						||
| 
								 | 
							
								                                       add_special_tokens=False)  # noqa
							 | 
						||
| 
								 | 
							
								        output_text = output_text.split('###')[0]
							 | 
						||
| 
								 | 
							
								        output_text = output_text.split('Assistant:')[-1].strip()
							 | 
						||
| 
								 | 
							
								        output_text = output_text.split('. ')[0]
							 | 
						||
| 
								 | 
							
								        output_text = output_text.strip('<Img>')
							 | 
						||
| 
								 | 
							
								        output_text = output_text.strip()
							 | 
						||
| 
								 | 
							
								        return output_text
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class MiniGPT4ScienceQAPostProcessor:
							 | 
						||
| 
								 | 
							
								    """"Post processor for MiniGPT-4 on ScienceQA."""
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def __init__(self) -> None:
							 | 
						||
| 
								 | 
							
								        pass
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def __call__(self, output_token: torch.tensor, tokenizer) -> str:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        if output_token[0] == 0:
							 | 
						||
| 
								 | 
							
								            output_token = output_token[1:]
							 | 
						||
| 
								 | 
							
								        if output_token[0] == 1:
							 | 
						||
| 
								 | 
							
								            output_token = output_token[1:]
							 | 
						||
| 
								 | 
							
								        output_text = tokenizer.decode(output_token,
							 | 
						||
| 
								 | 
							
								                                       add_special_tokens=False)  # noqa
							 | 
						||
| 
								 | 
							
								        output_text = output_text.split('###')[0]
							 | 
						||
| 
								 | 
							
								        output_text = output_text.split('Assistant:')[-1].strip()
							 | 
						||
| 
								 | 
							
								        pattern = re.compile(r'\(([A-Z])\)')
							 | 
						||
| 
								 | 
							
								        output_text = pattern.findall(output_text)
							 | 
						||
| 
								 | 
							
								        if len(output_text) == 0:
							 | 
						||
| 
								 | 
							
								            output_text = random.choice(['A', 'B', 'C', 'D'])
							 | 
						||
| 
								 | 
							
								        else:
							 | 
						||
| 
								 | 
							
								            output_text = output_text[0]
							 | 
						||
| 
								 | 
							
								        return output_text
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class MiniGPT4VQAPostProcessor:
							 | 
						||
| 
								 | 
							
								    """"Post processor for MiniGPT-4 on VQA."""
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def __init__(self) -> None:
							 | 
						||
| 
								 | 
							
								        pass
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def __call__(self, output_token: torch.tensor, tokenizer) -> str:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        if output_token[0] == 0:
							 | 
						||
| 
								 | 
							
								            output_token = output_token[1:]
							 | 
						||
| 
								 | 
							
								        if output_token[0] == 1:
							 | 
						||
| 
								 | 
							
								            output_token = output_token[1:]
							 | 
						||
| 
								 | 
							
								        output_text = tokenizer.decode(output_token,
							 | 
						||
| 
								 | 
							
								                                       add_special_tokens=False)  # noqa
							 | 
						||
| 
								 | 
							
								        output_text = output_text.split('###')[0]
							 | 
						||
| 
								 | 
							
								        output_text = output_text.split('Assistant:')[-1].strip()
							 | 
						||
| 
								 | 
							
								        return output_text
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class MiniGPT4VSRPostProcessor:
							 | 
						||
| 
								 | 
							
								    """"Post processor for MiniGPT-4 on VSR."""
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def __init__(self) -> None:
							 | 
						||
| 
								 | 
							
								        pass
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def __call__(self, output_token: torch.tensor, tokenizer) -> str:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        if output_token[0] == 0:
							 | 
						||
| 
								 | 
							
								            output_token = output_token[1:]
							 | 
						||
| 
								 | 
							
								        if output_token[0] == 1:
							 | 
						||
| 
								 | 
							
								            output_token = output_token[1:]
							 | 
						||
| 
								 | 
							
								        output_text = tokenizer.decode(output_token, add_special_tokens=False)
							 | 
						||
| 
								 | 
							
								        pattern = r'yes|no|Yes|No'
							 | 
						||
| 
								 | 
							
								        output_text = re.findall(pattern, output_text)
							 | 
						||
| 
								 | 
							
								        if len(output_text) > 0:
							 | 
						||
| 
								 | 
							
								            output_text = output_text[0].lower()
							 | 
						||
| 
								 | 
							
								        return output_text
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class MiniGPT4MMEPostProcessor(MiniGPT4MMBenchPostProcessor):
							 | 
						||
| 
								 | 
							
								    """"Post processor for MiniGPT-4 on MME."""
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def __init__(self) -> None:
							 | 
						||
| 
								 | 
							
								        super().__init__()
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def __call__(self, output_token: torch.tensor, tokenizer) -> str:
							 | 
						||
| 
								 | 
							
								        response = super().__call__(output_token, tokenizer)
							 | 
						||
| 
								 | 
							
								        # extract yes or no, copy from MME official evaluation script
							 | 
						||
| 
								 | 
							
								        prefix_pred_ans = response[:4].lower()
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        if 'yes' in prefix_pred_ans:
							 | 
						||
| 
								 | 
							
								            pred_label = 'yes'
							 | 
						||
| 
								 | 
							
								        elif 'no' in prefix_pred_ans:
							 | 
						||
| 
								 | 
							
								            pred_label = 'no'
							 | 
						||
| 
								 | 
							
								        else:
							 | 
						||
| 
								 | 
							
								            pred_label = 'other'
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        return pred_label
							 |