45 lines
		
	
	
		
			1.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			45 lines
		
	
	
		
			1.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
from opencompass.openicl.icl_prompt_template import PromptTemplate
 | 
						|
from opencompass.openicl.icl_retriever import ZeroRetriever
 | 
						|
from opencompass.openicl.icl_inferencer import AttackInferencer
 | 
						|
from opencompass.datasets import MATHDataset, MATHEvaluator, math_postprocess
 | 
						|
 | 
						|
math_reader_cfg = dict(input_columns=['problem'], output_column='solution')
 | 
						|
 | 
						|
original_prompt_list = [
 | 
						|
        "Solve the following math question about",
 | 
						|
        "Determine the solution to this mathematical problem related to",
 | 
						|
        "Calculate the answer to the following math query about",
 | 
						|
        "Find the solution for this mathematical challenge with",
 | 
						|
        "Compute the result of this math task concerning",
 | 
						|
        "Resolve the following mathematical question associated with",
 | 
						|
        "Work out the answer to this math problem featuring",
 | 
						|
        "Figure out the solution for the following mathematical task with",
 | 
						|
        "Obtain the result for this math question regarding",
 | 
						|
        "Evaluate the following mathematical problem that includes",
 | 
						|
]
 | 
						|
 | 
						|
math_infer_cfg = dict(
 | 
						|
    prompt_template=dict(
 | 
						|
        type=PromptTemplate,
 | 
						|
        template=dict(round=[
 | 
						|
            dict(
 | 
						|
                role="HUMAN",
 | 
						|
                prompt="{adv_prompt} {problem}:"),
 | 
						|
        ]),
 | 
						|
    ),
 | 
						|
    retriever=dict(type=ZeroRetriever),
 | 
						|
    inferencer=dict(type=AttackInferencer, original_prompt_list=original_prompt_list,max_out_len=512, adv_key='adv_prompt'))
 | 
						|
 | 
						|
math_eval_cfg = dict(
 | 
						|
    evaluator=dict(type=MATHEvaluator), pred_postprocessor=dict(type=math_postprocess))
 | 
						|
 | 
						|
math_datasets = [
 | 
						|
    dict(
 | 
						|
        type=MATHDataset,
 | 
						|
        abbr='math',
 | 
						|
        path='./data/math/math.json',
 | 
						|
        reader_cfg=math_reader_cfg,
 | 
						|
        infer_cfg=math_infer_cfg,
 | 
						|
        eval_cfg=math_eval_cfg)
 | 
						|
]
 |