40 lines
1.3 KiB
Python
40 lines
1.3 KiB
Python
from opencompass.openicl.icl_prompt_template import PromptTemplate
|
|
from opencompass.openicl.icl_retriever import ZeroRetriever
|
|
from opencompass.openicl.icl_inferencer import PPLInferencer
|
|
from opencompass.openicl.icl_evaluator import AccEvaluator
|
|
from opencompass.datasets import storyclozeDataset
|
|
|
|
storycloze_reader_cfg = dict(
|
|
input_columns=['context', 'sentence_quiz1', 'sentence_quiz2'],
|
|
output_column='answer_right_ending',
|
|
train_split='test',
|
|
test_split='test')
|
|
|
|
storycloze_infer_cfg = dict(
|
|
prompt_template=dict(
|
|
type=PromptTemplate,
|
|
template={
|
|
i: dict(round=[
|
|
dict(role="HUMAN", prompt="{context}"),
|
|
dict(role="BOT", prompt=f"{{sentence_quiz{i}}}"),
|
|
])
|
|
for i in range(1, 3)
|
|
}),
|
|
retriever=dict(type=ZeroRetriever),
|
|
inferencer=dict(type=PPLInferencer))
|
|
|
|
storycloze_eval_cfg = dict(evaluator=dict(type=AccEvaluator))
|
|
|
|
# The original story cloze dataset and repo are not long maintaining.
|
|
# Using multilingual version of this dataset.
|
|
storycloze_datasets = [
|
|
dict(
|
|
abbr='story_cloze',
|
|
type=storyclozeDataset,
|
|
path='juletxara/xstory_cloze',
|
|
name='en',
|
|
reader_cfg=storycloze_reader_cfg,
|
|
infer_cfg=storycloze_infer_cfg,
|
|
eval_cfg=storycloze_eval_cfg)
|
|
]
|