140 lines
		
	
	
		
			4.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			140 lines
		
	
	
		
			4.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import importlib
 | 
						|
 | 
						|
DEFAULT_IMAGE_TOKEN = '<image>'
 | 
						|
DEFAULT_IMAGE_PATCH_TOKEN = '<im_patch>'
 | 
						|
DEFAULT_IM_START_TOKEN = '<im_start>'
 | 
						|
DEFAULT_IM_END_TOKEN = '<im_end>'
 | 
						|
 | 
						|
 | 
						|
class LLaVABasePromptConstructor:
 | 
						|
    """Base prompt constructor for LLaVA.
 | 
						|
 | 
						|
    Args:
 | 
						|
        conv_mode (str): Version control args for different version of LLaVA.
 | 
						|
        mm_use_im_start_end (bool):
 | 
						|
            Config arg. Use start and end token when build prompt or not.
 | 
						|
        reply_prompt (str): Reply prompt added at the end. (Default: '')
 | 
						|
    """
 | 
						|
 | 
						|
    def __init__(self,
 | 
						|
                 conv_mode: str,
 | 
						|
                 mm_use_im_start_end: bool,
 | 
						|
                 reply_prompt: str = '') -> None:
 | 
						|
        conversation = importlib.import_module('llava.conversation')
 | 
						|
        self.conv_templates = conversation.conv_templates
 | 
						|
        self.conv_mode = conv_mode
 | 
						|
        self.mm_use_im_start_end = mm_use_im_start_end
 | 
						|
        self.SeparatorStyle = conversation.SeparatorStyle
 | 
						|
        self.reply_prompt = reply_prompt
 | 
						|
 | 
						|
    def __call__(self, inputs: dict) -> tuple:
 | 
						|
        """Construct prompt.
 | 
						|
 | 
						|
        Args:
 | 
						|
            inputs (dict): Input data containing images and data_samples.
 | 
						|
 | 
						|
        Returns:
 | 
						|
            tuple: A tuple containing prompt, images and data_samples.
 | 
						|
        """
 | 
						|
        data_samples = inputs['data_samples']
 | 
						|
        assert len(data_samples) == 1
 | 
						|
        prompt = self._build_prompt(data_samples[0])
 | 
						|
        if self.mm_use_im_start_end:
 | 
						|
            prompt = (DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN +
 | 
						|
                      DEFAULT_IM_END_TOKEN + '\n' + prompt)
 | 
						|
        else:
 | 
						|
            prompt = DEFAULT_IMAGE_TOKEN + '\n' + prompt  # noqa
 | 
						|
 | 
						|
        conv = self.conv_templates[self.conv_mode].copy()
 | 
						|
        conv.append_message(conv.roles[0], prompt)
 | 
						|
        conv.append_message(conv.roles[1], None)
 | 
						|
        output_prompt = conv.get_prompt()
 | 
						|
 | 
						|
        stop_str = conv.sep if conv.sep_style != self.SeparatorStyle.TWO else conv.sep2  # noqa
 | 
						|
 | 
						|
        return output_prompt, stop_str
 | 
						|
 | 
						|
    def _build_prompt(self, data_sample):
 | 
						|
        return self.reply_prompt
 | 
						|
 | 
						|
 | 
						|
class LLaVAMMBenchPromptConstructor(LLaVABasePromptConstructor):
 | 
						|
    """MMBench prompt constructor for LLaVA.
 | 
						|
 | 
						|
    Args:
 | 
						|
        conv_mode (str): Version control args for different version of LLaVA.
 | 
						|
        mm_use_im_start_end (bool):
 | 
						|
            Config arg. Use start and end token when build prompt or not.
 | 
						|
        reply_prompt (str): Reply prompt added at the end. (Default: '')
 | 
						|
    """
 | 
						|
 | 
						|
    def __init__(self,
 | 
						|
                 conv_mode: str,
 | 
						|
                 mm_use_im_start_end: bool,
 | 
						|
                 reply_prompt: str = '') -> None:
 | 
						|
        super().__init__(conv_mode, mm_use_im_start_end, reply_prompt)
 | 
						|
 | 
						|
    def _build_prompt(self, data_sample):
 | 
						|
        question = data_sample.get('question')
 | 
						|
        options = data_sample.get('options')
 | 
						|
        context = data_sample.get('context')
 | 
						|
        if context is not None:
 | 
						|
            prompt = context + ' ' + question + ' ' + options
 | 
						|
        else:
 | 
						|
            prompt = question + ' ' + options
 | 
						|
        prompt += self.reply_prompt
 | 
						|
        return prompt
 | 
						|
 | 
						|
 | 
						|
class LLaVAVQAPromptConstructor(LLaVABasePromptConstructor):
 | 
						|
    """VQA prompt constructor for LLaVA.
 | 
						|
 | 
						|
    Args:
 | 
						|
        conv_mode (str): Version control args for different version of LLaVA.
 | 
						|
        mm_use_im_start_end (bool):
 | 
						|
            Config arg. Use start and end token when build prompt or not.
 | 
						|
        reply_prompt (str): Reply prompt added at the end. (Default: '')
 | 
						|
    """
 | 
						|
 | 
						|
    def __init__(self,
 | 
						|
                 conv_mode: str,
 | 
						|
                 mm_use_im_start_end: bool,
 | 
						|
                 reply_prompt: str = '') -> None:
 | 
						|
        super().__init__(conv_mode, mm_use_im_start_end, reply_prompt)
 | 
						|
 | 
						|
    def _build_prompt(self, data_sample):
 | 
						|
        prompt = data_sample.get('question')
 | 
						|
        prompt += self.reply_prompt
 | 
						|
        return prompt
 | 
						|
 | 
						|
 | 
						|
class LLaVAScienceQAPromptConstructor(LLaVABasePromptConstructor):
 | 
						|
    """ScienceQA prompt constructor for LLaVA.
 | 
						|
 | 
						|
    Args:
 | 
						|
        conv_mode (str): Version control args for different version of LLaVA.
 | 
						|
        mm_use_im_start_end (bool):
 | 
						|
            Config arg. Use start and end token when build prompt or not.
 | 
						|
        reply_prompt (str): Reply prompt added at the end. (Default: '')
 | 
						|
    """
 | 
						|
 | 
						|
    choice_mapping = {0: 'A', 1: 'B', 2: 'C', 3: 'D', 4: 'E', 5: 'F'}
 | 
						|
 | 
						|
    def __init__(self,
 | 
						|
                 conv_mode: str,
 | 
						|
                 mm_use_im_start_end: bool,
 | 
						|
                 reply_prompt: str = '') -> None:
 | 
						|
        super().__init__(conv_mode, mm_use_im_start_end, reply_prompt)
 | 
						|
 | 
						|
    def _build_prompt(self, data_sample):
 | 
						|
        question = data_sample.get('question')
 | 
						|
        choices = data_sample.get('choices')
 | 
						|
        choices = [
 | 
						|
            f'({self.choice_mapping[i]}) ' + item
 | 
						|
            for i, item in enumerate(choices)
 | 
						|
        ]
 | 
						|
        choices = 'Choices: ' + ' '.join(choices) + '\n'
 | 
						|
        context = 'Context: ' + data_sample.get('hint') + '\n'
 | 
						|
        prompt = context + question + choices + self.reply_prompt
 | 
						|
        return prompt
 |