Compare commits
14 Commits
50284de4b2
...
ed84bb06b1
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
ed84bb06b1 | ||
|
|
2fb945bb40 | ||
| 2fa60f0c84 | |||
|
|
643fa78f70 | ||
|
|
595c93811c | ||
|
|
677eedd971 | ||
|
|
2c6d9ffdae | ||
|
|
78d6bca530 | ||
|
|
9668d131bd | ||
|
|
9a475b07c3 | ||
|
|
7af7adc739 | ||
|
|
c03ef5ea2c | ||
|
|
f58577e288 | ||
|
|
6150cd7ad0 |
9
.gitattributes
vendored
9
.gitattributes
vendored
@ -33,4 +33,11 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
||||
*.zip filter=lfs diff=lfs merge=lfs -text
|
||||
*.zst filter=lfs diff=lfs merge=lfs -text
|
||||
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
||||
*.EncryptBy4pd filter=lfs diff=lfs merge=lfs -text
|
||||
<<<<<<< HEAD
|
||||
<<<<<<< HEAD
|
||||
=======
|
||||
*.EncryptBy4pd filter=lfs diff=lfs merge=lfs -text
|
||||
>>>>>>> 2fa60f0c8496db9c59a3e8484e808828e6b694b5
|
||||
=======
|
||||
*.EncryptBy4pd filter=lfs diff=lfs merge=lfs -text
|
||||
>>>>>>> 50284de4b28fbf82cb692f39f9319672fad5c872
|
||||
|
||||
528
README.md
Normal file
528
README.md
Normal file
@ -0,0 +1,528 @@
|
||||
|
||||
---
|
||||
license: apache-2.0
|
||||
language:
|
||||
- en
|
||||
pipeline_tag: image-text-to-text
|
||||
tags:
|
||||
- multimodal
|
||||
library_name: transformers
|
||||
---
|
||||
|
||||
# Qwen2.5-VL-7B-Instruct
|
||||
<a href="https://chat.qwenlm.ai/" target="_blank" style="margin: 2px;">
|
||||
<img alt="Chat" src="https://img.shields.io/badge/%F0%9F%92%9C%EF%B8%8F%20Qwen%20Chat%20-536af5" style="display: inline-block; vertical-align: middle;"/>
|
||||
</a>
|
||||
|
||||
## Introduction
|
||||
|
||||
In the past five months since Qwen2-VL’s release, numerous developers have built new models on the Qwen2-VL vision-language models, providing us with valuable feedback. During this period, we focused on building more useful vision-language models. Today, we are excited to introduce the latest addition to the Qwen family: Qwen2.5-VL.
|
||||
|
||||
#### Key Enhancements:
|
||||
* **Understand things visually**: Qwen2.5-VL is not only proficient in recognizing common objects such as flowers, birds, fish, and insects, but it is highly capable of analyzing texts, charts, icons, graphics, and layouts within images.
|
||||
|
||||
* **Being agentic**: Qwen2.5-VL directly plays as a visual agent that can reason and dynamically direct tools, which is capable of computer use and phone use.
|
||||
|
||||
* **Understanding long videos and capturing events**: Qwen2.5-VL can comprehend videos of over 1 hour, and this time it has a new ability of cpaturing event by pinpointing the relevant video segments.
|
||||
|
||||
* **Capable of visual localization in different formats**: Qwen2.5-VL can accurately localize objects in an image by generating bounding boxes or points, and it can provide stable JSON outputs for coordinates and attributes.
|
||||
|
||||
* **Generating structured outputs**: for data like scans of invoices, forms, tables, etc. Qwen2.5-VL supports structured outputs of their contents, benefiting usages in finance, commerce, etc.
|
||||
|
||||
|
||||
#### Model Architecture Updates:
|
||||
|
||||
* **Dynamic Resolution and Frame Rate Training for Video Understanding**:
|
||||
|
||||
We extend dynamic resolution to the temporal dimension by adopting dynamic FPS sampling, enabling the model to comprehend videos at various sampling rates. Accordingly, we update mRoPE in the time dimension with IDs and absolute time alignment, enabling the model to learn temporal sequence and speed, and ultimately acquire the ability to pinpoint specific moments.
|
||||
|
||||
<p align="center">
|
||||
<img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2.5-VL/qwen2.5vl_arc.jpeg" width="80%"/>
|
||||
<p>
|
||||
|
||||
|
||||
* **Streamlined and Efficient Vision Encoder**
|
||||
|
||||
We enhance both training and inference speeds by strategically implementing window attention into the ViT. The ViT architecture is further optimized with SwiGLU and RMSNorm, aligning it with the structure of the Qwen2.5 LLM.
|
||||
|
||||
|
||||
We have three models with 3, 7 and 72 billion parameters. This repo contains the instruction-tuned 7B Qwen2.5-VL model. For more information, visit our [Blog](https://qwenlm.github.io/blog/qwen2.5-vl/) and [GitHub](https://github.com/QwenLM/Qwen2.5-VL).
|
||||
|
||||
|
||||
|
||||
## Evaluation
|
||||
|
||||
### Image benchmark
|
||||
|
||||
|
||||
| Benchmark | InternVL2.5-8B | MiniCPM-o 2.6 | GPT-4o-mini | Qwen2-VL-7B |**Qwen2.5-VL-7B** |
|
||||
| :--- | :---: | :---: | :---: | :---: | :---: |
|
||||
| MMMU<sub>val</sub> | 56 | 50.4 | **60**| 54.1 | 58.6|
|
||||
| MMMU-Pro<sub>val</sub> | 34.3 | - | 37.6| 30.5 | 41.0|
|
||||
| DocVQA<sub>test</sub> | 93 | 93 | - | 94.5 | **95.7** |
|
||||
| InfoVQA<sub>test</sub> | 77.6 | - | - |76.5 | **82.6** |
|
||||
| ChartQA<sub>test</sub> | 84.8 | - |- | 83.0 |**87.3** |
|
||||
| TextVQA<sub>val</sub> | 79.1 | 80.1 | -| 84.3 | **84.9**|
|
||||
| OCRBench | 822 | 852 | 785 | 845 | **864** |
|
||||
| CC_OCR | 57.7 | | | 61.6 | **77.8**|
|
||||
| MMStar | 62.8| | |60.7| **63.9**|
|
||||
| MMBench-V1.1-En<sub>test</sub> | 79.4 | 78.0 | 76.0| 80.7 | **82.6** |
|
||||
| MMT-Bench<sub>test</sub> | - | - | - |**63.7** |63.6 |
|
||||
| MMStar | **61.5** | 57.5 | 54.8 | 60.7 |63.9 |
|
||||
| MMVet<sub>GPT-4-Turbo</sub> | 54.2 | 60.0 | 66.9 | 62.0 | **67.1**|
|
||||
| HallBench<sub>avg</sub> | 45.2 | 48.1 | 46.1| 50.6 | **52.9**|
|
||||
| MathVista<sub>testmini</sub> | 58.3 | 60.6 | 52.4 | 58.2 | **68.2**|
|
||||
| MathVision | - | - | - | 16.3 | **25.07** |
|
||||
|
||||
### Video Benchmarks
|
||||
|
||||
| Benchmark | Qwen2-VL-7B | **Qwen2.5-VL-7B** |
|
||||
| :--- | :---: | :---: |
|
||||
| MVBench | 67.0 | **69.6** |
|
||||
| PerceptionTest<sub>test</sub> | 66.9 | **70.5** |
|
||||
| Video-MME<sub>wo/w subs</sub> | 63.3/69.0 | **65.1**/**71.6** |
|
||||
| LVBench | | 45.3 |
|
||||
| LongVideoBench | | 54.7 |
|
||||
| MMBench-Video | 1.44 | 1.79 |
|
||||
| TempCompass | | 71.7 |
|
||||
| MLVU | | 70.2 |
|
||||
| CharadesSTA/mIoU | 43.6|
|
||||
|
||||
### Agent benchmark
|
||||
| Benchmarks | Qwen2.5-VL-7B |
|
||||
|-------------------------|---------------|
|
||||
| ScreenSpot | 84.7 |
|
||||
| ScreenSpot Pro | 29.0 |
|
||||
| AITZ_EM | 81.9 |
|
||||
| Android Control High_EM | 60.1 |
|
||||
| Android Control Low_EM | 93.7 |
|
||||
| AndroidWorld_SR | 25.5 |
|
||||
| MobileMiniWob++_SR | 91.4 |
|
||||
|
||||
## Requirements
|
||||
The code of Qwen2.5-VL has been in the latest Hugging face transformers and we advise you to build from source with command:
|
||||
```
|
||||
pip install git+https://github.com/huggingface/transformers accelerate
|
||||
```
|
||||
or you might encounter the following error:
|
||||
```
|
||||
KeyError: 'qwen2_5_vl'
|
||||
```
|
||||
|
||||
|
||||
## Quickstart
|
||||
|
||||
Below, we provide simple examples to show how to use Qwen2.5-VL with 🤖 ModelScope and 🤗 Transformers.
|
||||
|
||||
The code of Qwen2.5-VL has been in the latest Hugging face transformers and we advise you to build from source with command:
|
||||
```
|
||||
pip install git+https://github.com/huggingface/transformers accelerate
|
||||
```
|
||||
or you might encounter the following error:
|
||||
```
|
||||
KeyError: 'qwen2_5_vl'
|
||||
```
|
||||
|
||||
|
||||
We offer a toolkit to help you handle various types of visual input more conveniently, as if you were using an API. This includes base64, URLs, and interleaved images and videos. You can install it using the following command:
|
||||
|
||||
```bash
|
||||
# It's highly recommanded to use `[decord]` feature for faster video loading.
|
||||
pip install qwen-vl-utils[decord]==0.0.8
|
||||
```
|
||||
|
||||
If you are not using Linux, you might not be able to install `decord` from PyPI. In that case, you can use `pip install qwen-vl-utils` which will fall back to using torchvision for video processing. However, you can still [install decord from source](https://github.com/dmlc/decord?tab=readme-ov-file#install-from-source) to get decord used when loading video.
|
||||
|
||||
### Using 🤗 Transformers to Chat
|
||||
|
||||
Here we show a code snippet to show you how to use the chat model with `transformers` and `qwen_vl_utils`:
|
||||
|
||||
```python
|
||||
from transformers import Qwen2_5_VLForConditionalGeneration, AutoTokenizer, AutoProcessor
|
||||
from qwen_vl_utils import process_vision_info
|
||||
|
||||
# default: Load the model on the available device(s)
|
||||
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
||||
"Qwen/Qwen2.5-VL-7B-Instruct", torch_dtype="auto", device_map="auto"
|
||||
)
|
||||
|
||||
# We recommend enabling flash_attention_2 for better acceleration and memory saving, especially in multi-image and video scenarios.
|
||||
# model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
||||
# "Qwen/Qwen2.5-VL-7B-Instruct",
|
||||
# torch_dtype=torch.bfloat16,
|
||||
# attn_implementation="flash_attention_2",
|
||||
# device_map="auto",
|
||||
# )
|
||||
|
||||
# default processer
|
||||
processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct")
|
||||
|
||||
# The default range for the number of visual tokens per image in the model is 4-16384.
|
||||
# You can set min_pixels and max_pixels according to your needs, such as a token range of 256-1280, to balance performance and cost.
|
||||
# min_pixels = 256*28*28
|
||||
# max_pixels = 1280*28*28
|
||||
# processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels)
|
||||
|
||||
messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "image",
|
||||
"image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg",
|
||||
},
|
||||
{"type": "text", "text": "Describe this image."},
|
||||
],
|
||||
}
|
||||
]
|
||||
|
||||
# Preparation for inference
|
||||
text = processor.apply_chat_template(
|
||||
messages, tokenize=False, add_generation_prompt=True
|
||||
)
|
||||
image_inputs, video_inputs = process_vision_info(messages)
|
||||
inputs = processor(
|
||||
text=[text],
|
||||
images=image_inputs,
|
||||
videos=video_inputs,
|
||||
padding=True,
|
||||
return_tensors="pt",
|
||||
)
|
||||
inputs = inputs.to("cuda")
|
||||
|
||||
# Inference: Generation of the output
|
||||
generated_ids = model.generate(**inputs, max_new_tokens=128)
|
||||
generated_ids_trimmed = [
|
||||
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
||||
]
|
||||
output_text = processor.batch_decode(
|
||||
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
||||
)
|
||||
print(output_text)
|
||||
```
|
||||
<details>
|
||||
<summary>Multi image inference</summary>
|
||||
|
||||
```python
|
||||
# Messages containing multiple images and a text query
|
||||
messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "image", "image": "file:///path/to/image1.jpg"},
|
||||
{"type": "image", "image": "file:///path/to/image2.jpg"},
|
||||
{"type": "text", "text": "Identify the similarities between these images."},
|
||||
],
|
||||
}
|
||||
]
|
||||
|
||||
# Preparation for inference
|
||||
text = processor.apply_chat_template(
|
||||
messages, tokenize=False, add_generation_prompt=True
|
||||
)
|
||||
image_inputs, video_inputs = process_vision_info(messages)
|
||||
inputs = processor(
|
||||
text=[text],
|
||||
images=image_inputs,
|
||||
videos=video_inputs,
|
||||
padding=True,
|
||||
return_tensors="pt",
|
||||
)
|
||||
inputs = inputs.to("cuda")
|
||||
|
||||
# Inference
|
||||
generated_ids = model.generate(**inputs, max_new_tokens=128)
|
||||
generated_ids_trimmed = [
|
||||
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
||||
]
|
||||
output_text = processor.batch_decode(
|
||||
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
||||
)
|
||||
print(output_text)
|
||||
```
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>Video inference</summary>
|
||||
|
||||
```python
|
||||
# Messages containing a images list as a video and a text query
|
||||
messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "video",
|
||||
"video": [
|
||||
"file:///path/to/frame1.jpg",
|
||||
"file:///path/to/frame2.jpg",
|
||||
"file:///path/to/frame3.jpg",
|
||||
"file:///path/to/frame4.jpg",
|
||||
],
|
||||
},
|
||||
{"type": "text", "text": "Describe this video."},
|
||||
],
|
||||
}
|
||||
]
|
||||
|
||||
# Messages containing a local video path and a text query
|
||||
messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "video",
|
||||
"video": "file:///path/to/video1.mp4",
|
||||
"max_pixels": 360 * 420,
|
||||
"fps": 1.0,
|
||||
},
|
||||
{"type": "text", "text": "Describe this video."},
|
||||
],
|
||||
}
|
||||
]
|
||||
|
||||
# Messages containing a video url and a text query
|
||||
messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "video",
|
||||
"video": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2-VL/space_woaudio.mp4",
|
||||
},
|
||||
{"type": "text", "text": "Describe this video."},
|
||||
],
|
||||
}
|
||||
]
|
||||
|
||||
#In Qwen 2.5 VL, frame rate information is also input into the model to align with absolute time.
|
||||
# Preparation for inference
|
||||
text = processor.apply_chat_template(
|
||||
messages, tokenize=False, add_generation_prompt=True
|
||||
)
|
||||
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)
|
||||
inputs = processor(
|
||||
text=[text],
|
||||
images=image_inputs,
|
||||
videos=video_inputs,
|
||||
fps=fps,
|
||||
padding=True,
|
||||
return_tensors="pt",
|
||||
**video_kwargs,
|
||||
)
|
||||
inputs = inputs.to("cuda")
|
||||
|
||||
# Inference
|
||||
generated_ids = model.generate(**inputs, max_new_tokens=128)
|
||||
generated_ids_trimmed = [
|
||||
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
||||
]
|
||||
output_text = processor.batch_decode(
|
||||
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
||||
)
|
||||
print(output_text)
|
||||
```
|
||||
|
||||
Video URL compatibility largely depends on the third-party library version. The details are in the table below. change the backend by `FORCE_QWENVL_VIDEO_READER=torchvision` or `FORCE_QWENVL_VIDEO_READER=decord` if you prefer not to use the default one.
|
||||
|
||||
| Backend | HTTP | HTTPS |
|
||||
|-------------|------|-------|
|
||||
| torchvision >= 0.19.0 | ✅ | ✅ |
|
||||
| torchvision < 0.19.0 | ❌ | ❌ |
|
||||
| decord | ✅ | ❌ |
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>Batch inference</summary>
|
||||
|
||||
```python
|
||||
# Sample messages for batch inference
|
||||
messages1 = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "image", "image": "file:///path/to/image1.jpg"},
|
||||
{"type": "image", "image": "file:///path/to/image2.jpg"},
|
||||
{"type": "text", "text": "What are the common elements in these pictures?"},
|
||||
],
|
||||
}
|
||||
]
|
||||
messages2 = [
|
||||
{"role": "system", "content": "You are a helpful assistant."},
|
||||
{"role": "user", "content": "Who are you?"},
|
||||
]
|
||||
# Combine messages for batch processing
|
||||
messages = [messages1, messages2]
|
||||
|
||||
# Preparation for batch inference
|
||||
texts = [
|
||||
processor.apply_chat_template(msg, tokenize=False, add_generation_prompt=True)
|
||||
for msg in messages
|
||||
]
|
||||
image_inputs, video_inputs = process_vision_info(messages)
|
||||
inputs = processor(
|
||||
text=texts,
|
||||
images=image_inputs,
|
||||
videos=video_inputs,
|
||||
padding=True,
|
||||
return_tensors="pt",
|
||||
)
|
||||
inputs = inputs.to("cuda")
|
||||
|
||||
# Batch Inference
|
||||
generated_ids = model.generate(**inputs, max_new_tokens=128)
|
||||
generated_ids_trimmed = [
|
||||
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
||||
]
|
||||
output_texts = processor.batch_decode(
|
||||
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
||||
)
|
||||
print(output_texts)
|
||||
```
|
||||
</details>
|
||||
|
||||
### 🤖 ModelScope
|
||||
We strongly advise users especially those in mainland China to use ModelScope. `snapshot_download` can help you solve issues concerning downloading checkpoints.
|
||||
|
||||
|
||||
### More Usage Tips
|
||||
|
||||
For input images, we support local files, base64, and URLs. For videos, we currently only support local files.
|
||||
|
||||
```python
|
||||
# You can directly insert a local file path, a URL, or a base64-encoded image into the position where you want in the text.
|
||||
## Local file path
|
||||
messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "image", "image": "file:///path/to/your/image.jpg"},
|
||||
{"type": "text", "text": "Describe this image."},
|
||||
],
|
||||
}
|
||||
]
|
||||
## Image URL
|
||||
messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "image", "image": "http://path/to/your/image.jpg"},
|
||||
{"type": "text", "text": "Describe this image."},
|
||||
],
|
||||
}
|
||||
]
|
||||
## Base64 encoded image
|
||||
messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "image", "image": "data:image;base64,/9j/..."},
|
||||
{"type": "text", "text": "Describe this image."},
|
||||
],
|
||||
}
|
||||
]
|
||||
```
|
||||
#### Image Resolution for performance boost
|
||||
|
||||
The model supports a wide range of resolution inputs. By default, it uses the native resolution for input, but higher resolutions can enhance performance at the cost of more computation. Users can set the minimum and maximum number of pixels to achieve an optimal configuration for their needs, such as a token count range of 256-1280, to balance speed and memory usage.
|
||||
|
||||
```python
|
||||
min_pixels = 256 * 28 * 28
|
||||
max_pixels = 1280 * 28 * 28
|
||||
processor = AutoProcessor.from_pretrained(
|
||||
"Qwen/Qwen2.5-VL-7B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels
|
||||
)
|
||||
```
|
||||
|
||||
Besides, We provide two methods for fine-grained control over the image size input to the model:
|
||||
|
||||
1. Define min_pixels and max_pixels: Images will be resized to maintain their aspect ratio within the range of min_pixels and max_pixels.
|
||||
|
||||
2. Specify exact dimensions: Directly set `resized_height` and `resized_width`. These values will be rounded to the nearest multiple of 28.
|
||||
|
||||
```python
|
||||
# min_pixels and max_pixels
|
||||
messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "image",
|
||||
"image": "file:///path/to/your/image.jpg",
|
||||
"resized_height": 280,
|
||||
"resized_width": 420,
|
||||
},
|
||||
{"type": "text", "text": "Describe this image."},
|
||||
],
|
||||
}
|
||||
]
|
||||
# resized_height and resized_width
|
||||
messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "image",
|
||||
"image": "file:///path/to/your/image.jpg",
|
||||
"min_pixels": 50176,
|
||||
"max_pixels": 50176,
|
||||
},
|
||||
{"type": "text", "text": "Describe this image."},
|
||||
],
|
||||
}
|
||||
]
|
||||
```
|
||||
|
||||
### Processing Long Texts
|
||||
|
||||
The current `config.json` is set for context length up to 32,768 tokens.
|
||||
To handle extensive inputs exceeding 32,768 tokens, we utilize [YaRN](https://arxiv.org/abs/2309.00071), a technique for enhancing model length extrapolation, ensuring optimal performance on lengthy texts.
|
||||
|
||||
For supported frameworks, you could add the following to `config.json` to enable YaRN:
|
||||
|
||||
{
|
||||
...,
|
||||
"type": "yarn",
|
||||
"mrope_section": [
|
||||
16,
|
||||
24,
|
||||
24
|
||||
],
|
||||
"factor": 4,
|
||||
"original_max_position_embeddings": 32768
|
||||
}
|
||||
|
||||
However, it should be noted that this method has a significant impact on the performance of temporal and spatial localization tasks, and is therefore not recommended for use.
|
||||
|
||||
At the same time, for long video inputs, since MRoPE itself is more economical with ids, the max_position_embeddings can be directly modified to a larger value, such as 64k.
|
||||
|
||||
|
||||
|
||||
|
||||
## Citation
|
||||
|
||||
If you find our work helpful, feel free to give us a cite.
|
||||
|
||||
```
|
||||
@misc{qwen2.5-VL,
|
||||
title = {Qwen2.5-VL},
|
||||
url = {https://qwenlm.github.io/blog/qwen2.5-vl/},
|
||||
author = {Qwen Team},
|
||||
month = {January},
|
||||
year = {2025}
|
||||
}
|
||||
|
||||
@article{Qwen2VL,
|
||||
title={Qwen2-VL: Enhancing Vision-Language Model's Perception of the World at Any Resolution},
|
||||
author={Wang, Peng and Bai, Shuai and Tan, Sinan and Wang, Shijie and Fan, Zhihao and Bai, Jinze and Chen, Keqin and Liu, Xuejing and Wang, Jialin and Ge, Wenbin and Fan, Yang and Dang, Kai and Du, Mengfei and Ren, Xuancheng and Men, Rui and Liu, Dayiheng and Zhou, Chang and Zhou, Jingren and Lin, Junyang},
|
||||
journal={arXiv preprint arXiv:2409.12191},
|
||||
year={2024}
|
||||
}
|
||||
|
||||
@article{Qwen-VL,
|
||||
title={Qwen-VL: A Versatile Vision-Language Model for Understanding, Localization, Text Reading, and Beyond},
|
||||
author={Bai, Jinze and Bai, Shuai and Yang, Shusheng and Wang, Shijie and Tan, Sinan and Wang, Peng and Lin, Junyang and Zhou, Chang and Zhou, Jingren},
|
||||
journal={arXiv preprint arXiv:2308.12966},
|
||||
year={2023}
|
||||
}
|
||||
```
|
||||
3
chat_template.json
Normal file
3
chat_template.json
Normal file
@ -0,0 +1,3 @@
|
||||
{
|
||||
"chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}"
|
||||
}
|
||||
61
config.json
Normal file
61
config.json
Normal file
@ -0,0 +1,61 @@
|
||||
{
|
||||
"architectures": [
|
||||
"Qwen2_5_VLForConditionalGeneration"
|
||||
],
|
||||
"attention_dropout": 0.0,
|
||||
"bos_token_id": 151643,
|
||||
"eos_token_id": 151645,
|
||||
"vision_start_token_id": 151652,
|
||||
"vision_end_token_id": 151653,
|
||||
"vision_token_id": 151654,
|
||||
"image_token_id": 151655,
|
||||
"video_token_id": 151656,
|
||||
"hidden_act": "silu",
|
||||
"hidden_size": 3584,
|
||||
"initializer_range": 0.02,
|
||||
"intermediate_size": 18944,
|
||||
"max_position_embeddings": 128000,
|
||||
"max_window_layers": 28,
|
||||
"model_type": "qwen2_5_vl",
|
||||
"num_attention_heads": 28,
|
||||
"num_hidden_layers": 28,
|
||||
"num_key_value_heads": 4,
|
||||
"rms_norm_eps": 1e-06,
|
||||
"rope_theta": 1000000.0,
|
||||
"sliding_window": 32768,
|
||||
"tie_word_embeddings": false,
|
||||
"torch_dtype": "bfloat16",
|
||||
"transformers_version": "4.41.2",
|
||||
"use_cache": true,
|
||||
"use_sliding_window": false,
|
||||
"vision_config": {
|
||||
"depth": 32,
|
||||
"hidden_act": "silu",
|
||||
"hidden_size": 1280,
|
||||
"intermediate_size": 3420,
|
||||
"num_heads": 16,
|
||||
"in_chans": 3,
|
||||
"out_hidden_size": 3584,
|
||||
"patch_size": 14,
|
||||
"spatial_merge_size": 2,
|
||||
"spatial_patch_size": 14,
|
||||
"window_size": 112,
|
||||
"fullatt_block_indexes": [
|
||||
7,
|
||||
15,
|
||||
23,
|
||||
31
|
||||
],
|
||||
"tokens_per_second": 2,
|
||||
"temporal_patch_size": 2
|
||||
},
|
||||
"rope_scaling": {
|
||||
"type": "mrope",
|
||||
"mrope_section": [
|
||||
16,
|
||||
24,
|
||||
24
|
||||
]
|
||||
},
|
||||
"vocab_size": 152064
|
||||
}
|
||||
1
configuration.json
Normal file
1
configuration.json
Normal file
@ -0,0 +1 @@
|
||||
{"framework": "pytorch", "task": "vision-understanding", "allow_remote": true}
|
||||
12
generation_config.json
Normal file
12
generation_config.json
Normal file
@ -0,0 +1,12 @@
|
||||
{
|
||||
"bos_token_id": 151643,
|
||||
"pad_token_id": 151643,
|
||||
"do_sample": true,
|
||||
"eos_token_id": [
|
||||
151645,
|
||||
151643
|
||||
],
|
||||
"repetition_penalty": 1.05,
|
||||
"temperature": 0.000001,
|
||||
"transformers_version": "4.37.0"
|
||||
}
|
||||
151387
merges.txt
Normal file
151387
merges.txt
Normal file
File diff suppressed because it is too large
Load Diff
BIN
model-00001-of-00005.safetensors
(Stored with Git LFS)
Normal file
BIN
model-00001-of-00005.safetensors
(Stored with Git LFS)
Normal file
Binary file not shown.
BIN
model-00002-of-00005.safetensors
(Stored with Git LFS)
Normal file
BIN
model-00002-of-00005.safetensors
(Stored with Git LFS)
Normal file
Binary file not shown.
BIN
model-00003-of-00005.safetensors
(Stored with Git LFS)
Normal file
BIN
model-00003-of-00005.safetensors
(Stored with Git LFS)
Normal file
Binary file not shown.
BIN
model-00004-of-00005.safetensors
(Stored with Git LFS)
Normal file
BIN
model-00004-of-00005.safetensors
(Stored with Git LFS)
Normal file
Binary file not shown.
BIN
model-00005-of-00005.safetensors
(Stored with Git LFS)
Normal file
BIN
model-00005-of-00005.safetensors
(Stored with Git LFS)
Normal file
Binary file not shown.
736
model.safetensors.index.json
Normal file
736
model.safetensors.index.json
Normal file
@ -0,0 +1,736 @@
|
||||
{
|
||||
"metadata": {
|
||||
"total_size": 16584333312
|
||||
},
|
||||
"weight_map": {
|
||||
"lm_head.weight": "model-00005-of-00005.safetensors",
|
||||
"model.embed_tokens.weight": "model-00001-of-00005.safetensors",
|
||||
"model.layers.0.input_layernorm.weight": "model-00001-of-00005.safetensors",
|
||||
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
|
||||
"model.layers.0.self_attn.k_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"model.layers.0.self_attn.q_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"model.layers.0.self_attn.v_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"model.layers.1.input_layernorm.weight": "model-00001-of-00005.safetensors",
|
||||
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
|
||||
"model.layers.1.self_attn.k_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"model.layers.1.self_attn.q_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"model.layers.1.self_attn.v_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"model.layers.10.input_layernorm.weight": "model-00002-of-00005.safetensors",
|
||||
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
|
||||
"model.layers.10.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
|
||||
"model.layers.10.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
|
||||
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
|
||||
"model.layers.10.self_attn.k_proj.bias": "model-00002-of-00005.safetensors",
|
||||
"model.layers.10.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
|
||||
"model.layers.10.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
|
||||
"model.layers.10.self_attn.q_proj.bias": "model-00002-of-00005.safetensors",
|
||||
"model.layers.10.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
|
||||
"model.layers.10.self_attn.v_proj.bias": "model-00002-of-00005.safetensors",
|
||||
"model.layers.10.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
|
||||
"model.layers.11.input_layernorm.weight": "model-00002-of-00005.safetensors",
|
||||
"model.layers.11.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
|
||||
"model.layers.11.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
|
||||
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
|
||||
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
|
||||
"model.layers.11.self_attn.k_proj.bias": "model-00002-of-00005.safetensors",
|
||||
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
|
||||
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
|
||||
"model.layers.11.self_attn.q_proj.bias": "model-00002-of-00005.safetensors",
|
||||
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
|
||||
"model.layers.11.self_attn.v_proj.bias": "model-00002-of-00005.safetensors",
|
||||
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
|
||||
"model.layers.12.input_layernorm.weight": "model-00003-of-00005.safetensors",
|
||||
"model.layers.12.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
|
||||
"model.layers.12.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
|
||||
"model.layers.12.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
|
||||
"model.layers.12.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
|
||||
"model.layers.12.self_attn.k_proj.bias": "model-00003-of-00005.safetensors",
|
||||
"model.layers.12.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
|
||||
"model.layers.12.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
|
||||
"model.layers.12.self_attn.q_proj.bias": "model-00003-of-00005.safetensors",
|
||||
"model.layers.12.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
|
||||
"model.layers.12.self_attn.v_proj.bias": "model-00003-of-00005.safetensors",
|
||||
"model.layers.12.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
|
||||
"model.layers.13.input_layernorm.weight": "model-00003-of-00005.safetensors",
|
||||
"model.layers.13.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
|
||||
"model.layers.13.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
|
||||
"model.layers.13.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
|
||||
"model.layers.13.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
|
||||
"model.layers.13.self_attn.k_proj.bias": "model-00003-of-00005.safetensors",
|
||||
"model.layers.13.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
|
||||
"model.layers.13.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
|
||||
"model.layers.13.self_attn.q_proj.bias": "model-00003-of-00005.safetensors",
|
||||
"model.layers.13.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
|
||||
"model.layers.13.self_attn.v_proj.bias": "model-00003-of-00005.safetensors",
|
||||
"model.layers.13.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
|
||||
"model.layers.14.input_layernorm.weight": "model-00003-of-00005.safetensors",
|
||||
"model.layers.14.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
|
||||
"model.layers.14.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
|
||||
"model.layers.14.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
|
||||
"model.layers.14.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
|
||||
"model.layers.14.self_attn.k_proj.bias": "model-00003-of-00005.safetensors",
|
||||
"model.layers.14.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
|
||||
"model.layers.14.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
|
||||
"model.layers.14.self_attn.q_proj.bias": "model-00003-of-00005.safetensors",
|
||||
"model.layers.14.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
|
||||
"model.layers.14.self_attn.v_proj.bias": "model-00003-of-00005.safetensors",
|
||||
"model.layers.14.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
|
||||
"model.layers.15.input_layernorm.weight": "model-00003-of-00005.safetensors",
|
||||
"model.layers.15.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
|
||||
"model.layers.15.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
|
||||
"model.layers.15.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
|
||||
"model.layers.15.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
|
||||
"model.layers.15.self_attn.k_proj.bias": "model-00003-of-00005.safetensors",
|
||||
"model.layers.15.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
|
||||
"model.layers.15.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
|
||||
"model.layers.15.self_attn.q_proj.bias": "model-00003-of-00005.safetensors",
|
||||
"model.layers.15.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
|
||||
"model.layers.15.self_attn.v_proj.bias": "model-00003-of-00005.safetensors",
|
||||
"model.layers.15.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
|
||||
"model.layers.16.input_layernorm.weight": "model-00003-of-00005.safetensors",
|
||||
"model.layers.16.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
|
||||
"model.layers.16.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
|
||||
"model.layers.16.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
|
||||
"model.layers.16.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
|
||||
"model.layers.16.self_attn.k_proj.bias": "model-00003-of-00005.safetensors",
|
||||
"model.layers.16.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
|
||||
"model.layers.16.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
|
||||
"model.layers.16.self_attn.q_proj.bias": "model-00003-of-00005.safetensors",
|
||||
"model.layers.16.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
|
||||
"model.layers.16.self_attn.v_proj.bias": "model-00003-of-00005.safetensors",
|
||||
"model.layers.16.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
|
||||
"model.layers.17.input_layernorm.weight": "model-00003-of-00005.safetensors",
|
||||
"model.layers.17.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
|
||||
"model.layers.17.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
|
||||
"model.layers.17.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
|
||||
"model.layers.17.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
|
||||
"model.layers.17.self_attn.k_proj.bias": "model-00003-of-00005.safetensors",
|
||||
"model.layers.17.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
|
||||
"model.layers.17.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
|
||||
"model.layers.17.self_attn.q_proj.bias": "model-00003-of-00005.safetensors",
|
||||
"model.layers.17.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
|
||||
"model.layers.17.self_attn.v_proj.bias": "model-00003-of-00005.safetensors",
|
||||
"model.layers.17.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
|
||||
"model.layers.18.input_layernorm.weight": "model-00003-of-00005.safetensors",
|
||||
"model.layers.18.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
|
||||
"model.layers.18.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
|
||||
"model.layers.18.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
|
||||
"model.layers.18.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
|
||||
"model.layers.18.self_attn.k_proj.bias": "model-00003-of-00005.safetensors",
|
||||
"model.layers.18.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
|
||||
"model.layers.18.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
|
||||
"model.layers.18.self_attn.q_proj.bias": "model-00003-of-00005.safetensors",
|
||||
"model.layers.18.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
|
||||
"model.layers.18.self_attn.v_proj.bias": "model-00003-of-00005.safetensors",
|
||||
"model.layers.18.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
|
||||
"model.layers.19.input_layernorm.weight": "model-00003-of-00005.safetensors",
|
||||
"model.layers.19.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
|
||||
"model.layers.19.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
|
||||
"model.layers.19.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
|
||||
"model.layers.19.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
|
||||
"model.layers.19.self_attn.k_proj.bias": "model-00003-of-00005.safetensors",
|
||||
"model.layers.19.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
|
||||
"model.layers.19.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
|
||||
"model.layers.19.self_attn.q_proj.bias": "model-00003-of-00005.safetensors",
|
||||
"model.layers.19.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
|
||||
"model.layers.19.self_attn.v_proj.bias": "model-00003-of-00005.safetensors",
|
||||
"model.layers.19.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
|
||||
"model.layers.2.input_layernorm.weight": "model-00001-of-00005.safetensors",
|
||||
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
|
||||
"model.layers.2.self_attn.k_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"model.layers.2.self_attn.q_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"model.layers.2.self_attn.v_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"model.layers.20.input_layernorm.weight": "model-00004-of-00005.safetensors",
|
||||
"model.layers.20.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
|
||||
"model.layers.20.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
|
||||
"model.layers.20.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
|
||||
"model.layers.20.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
|
||||
"model.layers.20.self_attn.k_proj.bias": "model-00004-of-00005.safetensors",
|
||||
"model.layers.20.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
|
||||
"model.layers.20.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
|
||||
"model.layers.20.self_attn.q_proj.bias": "model-00004-of-00005.safetensors",
|
||||
"model.layers.20.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
|
||||
"model.layers.20.self_attn.v_proj.bias": "model-00004-of-00005.safetensors",
|
||||
"model.layers.20.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
|
||||
"model.layers.21.input_layernorm.weight": "model-00004-of-00005.safetensors",
|
||||
"model.layers.21.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
|
||||
"model.layers.21.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
|
||||
"model.layers.21.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
|
||||
"model.layers.21.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
|
||||
"model.layers.21.self_attn.k_proj.bias": "model-00004-of-00005.safetensors",
|
||||
"model.layers.21.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
|
||||
"model.layers.21.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
|
||||
"model.layers.21.self_attn.q_proj.bias": "model-00004-of-00005.safetensors",
|
||||
"model.layers.21.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
|
||||
"model.layers.21.self_attn.v_proj.bias": "model-00004-of-00005.safetensors",
|
||||
"model.layers.21.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
|
||||
"model.layers.22.input_layernorm.weight": "model-00004-of-00005.safetensors",
|
||||
"model.layers.22.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
|
||||
"model.layers.22.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
|
||||
"model.layers.22.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
|
||||
"model.layers.22.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
|
||||
"model.layers.22.self_attn.k_proj.bias": "model-00004-of-00005.safetensors",
|
||||
"model.layers.22.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
|
||||
"model.layers.22.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
|
||||
"model.layers.22.self_attn.q_proj.bias": "model-00004-of-00005.safetensors",
|
||||
"model.layers.22.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
|
||||
"model.layers.22.self_attn.v_proj.bias": "model-00004-of-00005.safetensors",
|
||||
"model.layers.22.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
|
||||
"model.layers.23.input_layernorm.weight": "model-00004-of-00005.safetensors",
|
||||
"model.layers.23.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
|
||||
"model.layers.23.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
|
||||
"model.layers.23.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
|
||||
"model.layers.23.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
|
||||
"model.layers.23.self_attn.k_proj.bias": "model-00004-of-00005.safetensors",
|
||||
"model.layers.23.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
|
||||
"model.layers.23.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
|
||||
"model.layers.23.self_attn.q_proj.bias": "model-00004-of-00005.safetensors",
|
||||
"model.layers.23.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
|
||||
"model.layers.23.self_attn.v_proj.bias": "model-00004-of-00005.safetensors",
|
||||
"model.layers.23.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
|
||||
"model.layers.24.input_layernorm.weight": "model-00004-of-00005.safetensors",
|
||||
"model.layers.24.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
|
||||
"model.layers.24.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
|
||||
"model.layers.24.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
|
||||
"model.layers.24.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
|
||||
"model.layers.24.self_attn.k_proj.bias": "model-00004-of-00005.safetensors",
|
||||
"model.layers.24.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
|
||||
"model.layers.24.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
|
||||
"model.layers.24.self_attn.q_proj.bias": "model-00004-of-00005.safetensors",
|
||||
"model.layers.24.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
|
||||
"model.layers.24.self_attn.v_proj.bias": "model-00004-of-00005.safetensors",
|
||||
"model.layers.24.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
|
||||
"model.layers.25.input_layernorm.weight": "model-00004-of-00005.safetensors",
|
||||
"model.layers.25.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
|
||||
"model.layers.25.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
|
||||
"model.layers.25.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
|
||||
"model.layers.25.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
|
||||
"model.layers.25.self_attn.k_proj.bias": "model-00004-of-00005.safetensors",
|
||||
"model.layers.25.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
|
||||
"model.layers.25.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
|
||||
"model.layers.25.self_attn.q_proj.bias": "model-00004-of-00005.safetensors",
|
||||
"model.layers.25.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
|
||||
"model.layers.25.self_attn.v_proj.bias": "model-00004-of-00005.safetensors",
|
||||
"model.layers.25.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
|
||||
"model.layers.26.input_layernorm.weight": "model-00004-of-00005.safetensors",
|
||||
"model.layers.26.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
|
||||
"model.layers.26.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
|
||||
"model.layers.26.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
|
||||
"model.layers.26.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
|
||||
"model.layers.26.self_attn.k_proj.bias": "model-00004-of-00005.safetensors",
|
||||
"model.layers.26.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
|
||||
"model.layers.26.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
|
||||
"model.layers.26.self_attn.q_proj.bias": "model-00004-of-00005.safetensors",
|
||||
"model.layers.26.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
|
||||
"model.layers.26.self_attn.v_proj.bias": "model-00004-of-00005.safetensors",
|
||||
"model.layers.26.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
|
||||
"model.layers.27.input_layernorm.weight": "model-00004-of-00005.safetensors",
|
||||
"model.layers.27.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
|
||||
"model.layers.27.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
|
||||
"model.layers.27.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
|
||||
"model.layers.27.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
|
||||
"model.layers.27.self_attn.k_proj.bias": "model-00004-of-00005.safetensors",
|
||||
"model.layers.27.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
|
||||
"model.layers.27.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
|
||||
"model.layers.27.self_attn.q_proj.bias": "model-00004-of-00005.safetensors",
|
||||
"model.layers.27.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
|
||||
"model.layers.27.self_attn.v_proj.bias": "model-00004-of-00005.safetensors",
|
||||
"model.layers.27.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
|
||||
"model.layers.3.input_layernorm.weight": "model-00001-of-00005.safetensors",
|
||||
"model.layers.3.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
|
||||
"model.layers.3.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
|
||||
"model.layers.3.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
|
||||
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
|
||||
"model.layers.3.self_attn.k_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"model.layers.3.self_attn.q_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"model.layers.3.self_attn.v_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"model.layers.4.input_layernorm.weight": "model-00002-of-00005.safetensors",
|
||||
"model.layers.4.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
|
||||
"model.layers.4.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
|
||||
"model.layers.4.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
|
||||
"model.layers.4.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
|
||||
"model.layers.4.self_attn.k_proj.bias": "model-00002-of-00005.safetensors",
|
||||
"model.layers.4.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
|
||||
"model.layers.4.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
|
||||
"model.layers.4.self_attn.q_proj.bias": "model-00002-of-00005.safetensors",
|
||||
"model.layers.4.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
|
||||
"model.layers.4.self_attn.v_proj.bias": "model-00002-of-00005.safetensors",
|
||||
"model.layers.4.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
|
||||
"model.layers.5.input_layernorm.weight": "model-00002-of-00005.safetensors",
|
||||
"model.layers.5.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
|
||||
"model.layers.5.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
|
||||
"model.layers.5.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
|
||||
"model.layers.5.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
|
||||
"model.layers.5.self_attn.k_proj.bias": "model-00002-of-00005.safetensors",
|
||||
"model.layers.5.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
|
||||
"model.layers.5.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
|
||||
"model.layers.5.self_attn.q_proj.bias": "model-00002-of-00005.safetensors",
|
||||
"model.layers.5.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
|
||||
"model.layers.5.self_attn.v_proj.bias": "model-00002-of-00005.safetensors",
|
||||
"model.layers.5.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
|
||||
"model.layers.6.input_layernorm.weight": "model-00002-of-00005.safetensors",
|
||||
"model.layers.6.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
|
||||
"model.layers.6.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
|
||||
"model.layers.6.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
|
||||
"model.layers.6.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
|
||||
"model.layers.6.self_attn.k_proj.bias": "model-00002-of-00005.safetensors",
|
||||
"model.layers.6.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
|
||||
"model.layers.6.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
|
||||
"model.layers.6.self_attn.q_proj.bias": "model-00002-of-00005.safetensors",
|
||||
"model.layers.6.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
|
||||
"model.layers.6.self_attn.v_proj.bias": "model-00002-of-00005.safetensors",
|
||||
"model.layers.6.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
|
||||
"model.layers.7.input_layernorm.weight": "model-00002-of-00005.safetensors",
|
||||
"model.layers.7.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
|
||||
"model.layers.7.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
|
||||
"model.layers.7.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
|
||||
"model.layers.7.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
|
||||
"model.layers.7.self_attn.k_proj.bias": "model-00002-of-00005.safetensors",
|
||||
"model.layers.7.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
|
||||
"model.layers.7.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
|
||||
"model.layers.7.self_attn.q_proj.bias": "model-00002-of-00005.safetensors",
|
||||
"model.layers.7.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
|
||||
"model.layers.7.self_attn.v_proj.bias": "model-00002-of-00005.safetensors",
|
||||
"model.layers.7.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
|
||||
"model.layers.8.input_layernorm.weight": "model-00002-of-00005.safetensors",
|
||||
"model.layers.8.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
|
||||
"model.layers.8.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
|
||||
"model.layers.8.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
|
||||
"model.layers.8.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
|
||||
"model.layers.8.self_attn.k_proj.bias": "model-00002-of-00005.safetensors",
|
||||
"model.layers.8.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
|
||||
"model.layers.8.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
|
||||
"model.layers.8.self_attn.q_proj.bias": "model-00002-of-00005.safetensors",
|
||||
"model.layers.8.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
|
||||
"model.layers.8.self_attn.v_proj.bias": "model-00002-of-00005.safetensors",
|
||||
"model.layers.8.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
|
||||
"model.layers.9.input_layernorm.weight": "model-00002-of-00005.safetensors",
|
||||
"model.layers.9.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
|
||||
"model.layers.9.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
|
||||
"model.layers.9.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
|
||||
"model.layers.9.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
|
||||
"model.layers.9.self_attn.k_proj.bias": "model-00002-of-00005.safetensors",
|
||||
"model.layers.9.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
|
||||
"model.layers.9.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
|
||||
"model.layers.9.self_attn.q_proj.bias": "model-00002-of-00005.safetensors",
|
||||
"model.layers.9.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
|
||||
"model.layers.9.self_attn.v_proj.bias": "model-00002-of-00005.safetensors",
|
||||
"model.layers.9.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
|
||||
"model.norm.weight": "model-00004-of-00005.safetensors",
|
||||
"visual.blocks.0.attn.proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.0.attn.proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.0.attn.qkv.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.0.attn.qkv.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.0.mlp.down_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.0.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.0.mlp.gate_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.0.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.0.mlp.up_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.0.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.0.norm1.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.0.norm2.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.1.attn.proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.1.attn.proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.1.attn.qkv.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.1.attn.qkv.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.1.mlp.down_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.1.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.1.mlp.gate_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.1.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.1.mlp.up_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.1.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.1.norm1.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.1.norm2.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.10.attn.proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.10.attn.proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.10.attn.qkv.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.10.attn.qkv.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.10.mlp.down_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.10.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.10.mlp.gate_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.10.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.10.mlp.up_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.10.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.10.norm1.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.10.norm2.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.11.attn.proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.11.attn.proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.11.attn.qkv.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.11.attn.qkv.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.11.mlp.down_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.11.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.11.mlp.gate_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.11.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.11.mlp.up_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.11.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.11.norm1.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.11.norm2.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.12.attn.proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.12.attn.proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.12.attn.qkv.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.12.attn.qkv.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.12.mlp.down_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.12.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.12.mlp.gate_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.12.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.12.mlp.up_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.12.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.12.norm1.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.12.norm2.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.13.attn.proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.13.attn.proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.13.attn.qkv.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.13.attn.qkv.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.13.mlp.down_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.13.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.13.mlp.gate_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.13.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.13.mlp.up_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.13.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.13.norm1.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.13.norm2.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.14.attn.proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.14.attn.proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.14.attn.qkv.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.14.attn.qkv.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.14.mlp.down_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.14.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.14.mlp.gate_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.14.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.14.mlp.up_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.14.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.14.norm1.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.14.norm2.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.15.attn.proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.15.attn.proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.15.attn.qkv.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.15.attn.qkv.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.15.mlp.down_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.15.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.15.mlp.gate_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.15.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.15.mlp.up_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.15.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.15.norm1.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.15.norm2.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.16.attn.proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.16.attn.proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.16.attn.qkv.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.16.attn.qkv.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.16.mlp.down_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.16.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.16.mlp.gate_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.16.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.16.mlp.up_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.16.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.16.norm1.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.16.norm2.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.17.attn.proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.17.attn.proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.17.attn.qkv.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.17.attn.qkv.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.17.mlp.down_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.17.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.17.mlp.gate_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.17.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.17.mlp.up_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.17.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.17.norm1.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.17.norm2.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.18.attn.proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.18.attn.proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.18.attn.qkv.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.18.attn.qkv.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.18.mlp.down_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.18.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.18.mlp.gate_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.18.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.18.mlp.up_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.18.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.18.norm1.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.18.norm2.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.19.attn.proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.19.attn.proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.19.attn.qkv.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.19.attn.qkv.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.19.mlp.down_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.19.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.19.mlp.gate_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.19.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.19.mlp.up_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.19.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.19.norm1.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.19.norm2.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.2.attn.proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.2.attn.proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.2.attn.qkv.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.2.attn.qkv.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.2.mlp.down_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.2.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.2.mlp.gate_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.2.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.2.mlp.up_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.2.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.2.norm1.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.2.norm2.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.20.attn.proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.20.attn.proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.20.attn.qkv.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.20.attn.qkv.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.20.mlp.down_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.20.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.20.mlp.gate_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.20.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.20.mlp.up_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.20.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.20.norm1.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.20.norm2.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.21.attn.proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.21.attn.proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.21.attn.qkv.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.21.attn.qkv.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.21.mlp.down_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.21.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.21.mlp.gate_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.21.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.21.mlp.up_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.21.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.21.norm1.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.21.norm2.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.22.attn.proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.22.attn.proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.22.attn.qkv.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.22.attn.qkv.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.22.mlp.down_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.22.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.22.mlp.gate_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.22.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.22.mlp.up_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.22.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.22.norm1.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.22.norm2.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.23.attn.proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.23.attn.proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.23.attn.qkv.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.23.attn.qkv.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.23.mlp.down_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.23.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.23.mlp.gate_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.23.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.23.mlp.up_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.23.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.23.norm1.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.23.norm2.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.24.attn.proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.24.attn.proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.24.attn.qkv.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.24.attn.qkv.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.24.mlp.down_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.24.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.24.mlp.gate_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.24.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.24.mlp.up_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.24.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.24.norm1.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.24.norm2.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.25.attn.proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.25.attn.proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.25.attn.qkv.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.25.attn.qkv.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.25.mlp.down_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.25.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.25.mlp.gate_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.25.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.25.mlp.up_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.25.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.25.norm1.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.25.norm2.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.26.attn.proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.26.attn.proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.26.attn.qkv.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.26.attn.qkv.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.26.mlp.down_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.26.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.26.mlp.gate_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.26.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.26.mlp.up_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.26.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.26.norm1.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.26.norm2.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.27.attn.proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.27.attn.proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.27.attn.qkv.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.27.attn.qkv.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.27.mlp.down_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.27.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.27.mlp.gate_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.27.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.27.mlp.up_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.27.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.27.norm1.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.27.norm2.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.28.attn.proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.28.attn.proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.28.attn.qkv.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.28.attn.qkv.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.28.mlp.down_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.28.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.28.mlp.gate_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.28.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.28.mlp.up_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.28.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.28.norm1.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.28.norm2.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.29.attn.proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.29.attn.proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.29.attn.qkv.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.29.attn.qkv.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.29.mlp.down_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.29.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.29.mlp.gate_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.29.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.29.mlp.up_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.29.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.29.norm1.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.29.norm2.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.3.attn.proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.3.attn.proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.3.attn.qkv.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.3.attn.qkv.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.3.mlp.down_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.3.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.3.mlp.gate_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.3.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.3.mlp.up_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.3.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.3.norm1.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.3.norm2.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.30.attn.proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.30.attn.proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.30.attn.qkv.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.30.attn.qkv.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.30.mlp.down_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.30.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.30.mlp.gate_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.30.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.30.mlp.up_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.30.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.30.norm1.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.30.norm2.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.31.attn.proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.31.attn.proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.31.attn.qkv.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.31.attn.qkv.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.31.mlp.down_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.31.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.31.mlp.gate_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.31.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.31.mlp.up_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.31.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.31.norm1.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.31.norm2.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.4.attn.proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.4.attn.proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.4.attn.qkv.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.4.attn.qkv.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.4.mlp.down_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.4.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.4.mlp.gate_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.4.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.4.mlp.up_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.4.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.4.norm1.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.4.norm2.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.5.attn.proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.5.attn.proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.5.attn.qkv.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.5.attn.qkv.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.5.mlp.down_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.5.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.5.mlp.gate_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.5.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.5.mlp.up_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.5.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.5.norm1.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.5.norm2.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.6.attn.proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.6.attn.proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.6.attn.qkv.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.6.attn.qkv.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.6.mlp.down_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.6.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.6.mlp.gate_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.6.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.6.mlp.up_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.6.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.6.norm1.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.6.norm2.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.7.attn.proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.7.attn.proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.7.attn.qkv.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.7.attn.qkv.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.7.mlp.down_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.7.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.7.mlp.gate_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.7.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.7.mlp.up_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.7.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.7.norm1.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.7.norm2.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.8.attn.proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.8.attn.proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.8.attn.qkv.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.8.attn.qkv.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.8.mlp.down_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.8.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.8.mlp.gate_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.8.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.8.mlp.up_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.8.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.8.norm1.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.8.norm2.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.9.attn.proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.9.attn.proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.9.attn.qkv.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.9.attn.qkv.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.9.mlp.down_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.9.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.9.mlp.gate_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.9.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.9.mlp.up_proj.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.9.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.9.norm1.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.blocks.9.norm2.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.merger.ln_q.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.merger.mlp.0.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.merger.mlp.0.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.merger.mlp.2.bias": "model-00001-of-00005.safetensors",
|
||||
"visual.merger.mlp.2.weight": "model-00001-of-00005.safetensors",
|
||||
"visual.patch_embed.proj.weight": "model-00001-of-00005.safetensors"
|
||||
}
|
||||
}
|
||||
19
preprocessor_config.json
Normal file
19
preprocessor_config.json
Normal file
@ -0,0 +1,19 @@
|
||||
{
|
||||
"min_pixels": 3136,
|
||||
"max_pixels": 12845056,
|
||||
"patch_size": 14,
|
||||
"temporal_patch_size": 2,
|
||||
"merge_size": 2,
|
||||
"image_mean": [
|
||||
0.48145466,
|
||||
0.4578275,
|
||||
0.40821073
|
||||
],
|
||||
"image_std": [
|
||||
0.26862954,
|
||||
0.26130258,
|
||||
0.27577711
|
||||
],
|
||||
"image_processor_type": "Qwen2VLImageProcessor",
|
||||
"processor_class": "Qwen2_5_VLProcessor"
|
||||
}
|
||||
303282
tokenizer.json
Normal file
303282
tokenizer.json
Normal file
File diff suppressed because it is too large
Load Diff
207
tokenizer_config.json
Normal file
207
tokenizer_config.json
Normal file
@ -0,0 +1,207 @@
|
||||
{
|
||||
"add_prefix_space": false,
|
||||
"added_tokens_decoder": {
|
||||
"151643": {
|
||||
"content": "<|endoftext|>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": true
|
||||
},
|
||||
"151644": {
|
||||
"content": "<|im_start|>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": true
|
||||
},
|
||||
"151645": {
|
||||
"content": "<|im_end|>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": true
|
||||
},
|
||||
"151646": {
|
||||
"content": "<|object_ref_start|>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": true
|
||||
},
|
||||
"151647": {
|
||||
"content": "<|object_ref_end|>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": true
|
||||
},
|
||||
"151648": {
|
||||
"content": "<|box_start|>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": true
|
||||
},
|
||||
"151649": {
|
||||
"content": "<|box_end|>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": true
|
||||
},
|
||||
"151650": {
|
||||
"content": "<|quad_start|>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": true
|
||||
},
|
||||
"151651": {
|
||||
"content": "<|quad_end|>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": true
|
||||
},
|
||||
"151652": {
|
||||
"content": "<|vision_start|>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": true
|
||||
},
|
||||
"151653": {
|
||||
"content": "<|vision_end|>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": true
|
||||
},
|
||||
"151654": {
|
||||
"content": "<|vision_pad|>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": true
|
||||
},
|
||||
"151655": {
|
||||
"content": "<|image_pad|>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": true
|
||||
},
|
||||
"151656": {
|
||||
"content": "<|video_pad|>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": true
|
||||
},
|
||||
"151657": {
|
||||
"content": "<tool_call>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": false
|
||||
},
|
||||
"151658": {
|
||||
"content": "</tool_call>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": false
|
||||
},
|
||||
"151659": {
|
||||
"content": "<|fim_prefix|>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": false
|
||||
},
|
||||
"151660": {
|
||||
"content": "<|fim_middle|>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": false
|
||||
},
|
||||
"151661": {
|
||||
"content": "<|fim_suffix|>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": false
|
||||
},
|
||||
"151662": {
|
||||
"content": "<|fim_pad|>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": false
|
||||
},
|
||||
"151663": {
|
||||
"content": "<|repo_name|>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": false
|
||||
},
|
||||
"151664": {
|
||||
"content": "<|file_sep|>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": false
|
||||
}
|
||||
},
|
||||
"additional_special_tokens": [
|
||||
"<|im_start|>",
|
||||
"<|im_end|>",
|
||||
"<|object_ref_start|>",
|
||||
"<|object_ref_end|>",
|
||||
"<|box_start|>",
|
||||
"<|box_end|>",
|
||||
"<|quad_start|>",
|
||||
"<|quad_end|>",
|
||||
"<|vision_start|>",
|
||||
"<|vision_end|>",
|
||||
"<|vision_pad|>",
|
||||
"<|image_pad|>",
|
||||
"<|video_pad|>"
|
||||
],
|
||||
"bos_token": null,
|
||||
"chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}",
|
||||
"clean_up_tokenization_spaces": false,
|
||||
"eos_token": "<|im_end|>",
|
||||
"errors": "replace",
|
||||
"model_max_length": 131072,
|
||||
"pad_token": "<|endoftext|>",
|
||||
"split_special_tokens": false,
|
||||
"tokenizer_class": "Qwen2Tokenizer",
|
||||
"unk_token": null,
|
||||
"add_bos_token": false
|
||||
}
|
||||
1
vocab.json
Normal file
1
vocab.json
Normal file
File diff suppressed because one or more lines are too long
Loading…
Reference in New Issue
Block a user