Compare commits
	
		
			No commits in common. "ed84bb06b1e7898b39fc3433c5627813ee22479c" and "50284de4b28fbf82cb692f39f9319672fad5c872" have entirely different histories.
		
	
	
		
			ed84bb06b1
			...
			50284de4b2
		
	
		
							
								
								
									
										7
									
								
								.gitattributes
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										7
									
								
								.gitattributes
									
									
									
									
										vendored
									
									
								
							@ -33,11 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
 | 
			
		||||
*.zip filter=lfs diff=lfs merge=lfs -text
 | 
			
		||||
*.zst filter=lfs diff=lfs merge=lfs -text
 | 
			
		||||
*tfevents* filter=lfs diff=lfs merge=lfs -text
 | 
			
		||||
<<<<<<< HEAD
 | 
			
		||||
<<<<<<< HEAD
 | 
			
		||||
=======
 | 
			
		||||
*.EncryptBy4pd filter=lfs diff=lfs merge=lfs -text
 | 
			
		||||
>>>>>>> 2fa60f0c8496db9c59a3e8484e808828e6b694b5
 | 
			
		||||
=======
 | 
			
		||||
*.EncryptBy4pd filter=lfs diff=lfs merge=lfs -text
 | 
			
		||||
>>>>>>> 50284de4b28fbf82cb692f39f9319672fad5c872
 | 
			
		||||
 | 
			
		||||
							
								
								
									
										528
									
								
								README.md
									
									
									
									
									
								
							
							
						
						
									
										528
									
								
								README.md
									
									
									
									
									
								
							@ -1,528 +0,0 @@
 | 
			
		||||
 | 
			
		||||
---
 | 
			
		||||
license: apache-2.0
 | 
			
		||||
language:
 | 
			
		||||
- en
 | 
			
		||||
pipeline_tag: image-text-to-text
 | 
			
		||||
tags:
 | 
			
		||||
- multimodal
 | 
			
		||||
library_name: transformers
 | 
			
		||||
---
 | 
			
		||||
 | 
			
		||||
# Qwen2.5-VL-7B-Instruct
 | 
			
		||||
<a href="https://chat.qwenlm.ai/" target="_blank" style="margin: 2px;">
 | 
			
		||||
    <img alt="Chat" src="https://img.shields.io/badge/%F0%9F%92%9C%EF%B8%8F%20Qwen%20Chat%20-536af5" style="display: inline-block; vertical-align: middle;"/>
 | 
			
		||||
</a>
 | 
			
		||||
 | 
			
		||||
## Introduction
 | 
			
		||||
 | 
			
		||||
In the past five months since Qwen2-VL’s release, numerous developers have built new models on the Qwen2-VL vision-language models, providing us with valuable feedback. During this period, we focused on building more useful vision-language models. Today, we are excited to introduce the latest addition to the Qwen family: Qwen2.5-VL.
 | 
			
		||||
 | 
			
		||||
#### Key Enhancements:
 | 
			
		||||
* **Understand things visually**: Qwen2.5-VL is not only proficient in recognizing common objects such as flowers, birds, fish, and insects, but it is highly capable of analyzing texts, charts, icons, graphics, and layouts within images.
 | 
			
		||||
 | 
			
		||||
* **Being agentic**: Qwen2.5-VL directly plays as a visual agent that can reason and dynamically direct tools, which is capable of computer use and phone use.
 | 
			
		||||
 | 
			
		||||
* **Understanding long videos and capturing events**: Qwen2.5-VL can comprehend videos of over 1 hour, and this time it has a new ability of cpaturing event by pinpointing the relevant video segments.
 | 
			
		||||
 | 
			
		||||
* **Capable of visual localization in different formats**: Qwen2.5-VL can accurately localize objects in an image by generating bounding boxes or points, and it can provide stable JSON outputs for coordinates and attributes.
 | 
			
		||||
 | 
			
		||||
* **Generating structured outputs**: for data like scans of invoices, forms, tables, etc. Qwen2.5-VL supports structured outputs of their contents, benefiting usages in finance, commerce, etc.
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
#### Model Architecture Updates:
 | 
			
		||||
 | 
			
		||||
* **Dynamic Resolution and Frame Rate Training for Video Understanding**:
 | 
			
		||||
 | 
			
		||||
We extend dynamic resolution to the temporal dimension by adopting dynamic FPS sampling, enabling the model to comprehend videos at various sampling rates. Accordingly, we update mRoPE in the time dimension with IDs and absolute time alignment, enabling the model to learn temporal sequence and speed, and ultimately acquire the ability to pinpoint specific moments.
 | 
			
		||||
 | 
			
		||||
<p align="center">
 | 
			
		||||
    <img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2.5-VL/qwen2.5vl_arc.jpeg" width="80%"/>
 | 
			
		||||
<p>
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
* **Streamlined and Efficient Vision Encoder**
 | 
			
		||||
 | 
			
		||||
We enhance both training and inference speeds by strategically implementing window attention into the ViT. The ViT architecture is further optimized with SwiGLU and RMSNorm, aligning it with the structure of the Qwen2.5 LLM.
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
We have three models with 3, 7 and 72 billion parameters. This repo contains the instruction-tuned 7B Qwen2.5-VL model. For more information, visit our [Blog](https://qwenlm.github.io/blog/qwen2.5-vl/) and [GitHub](https://github.com/QwenLM/Qwen2.5-VL).
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
## Evaluation
 | 
			
		||||
 | 
			
		||||
### Image benchmark
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
| Benchmark | InternVL2.5-8B | MiniCPM-o 2.6 | GPT-4o-mini | Qwen2-VL-7B |**Qwen2.5-VL-7B** |
 | 
			
		||||
| :--- | :---: | :---: | :---: | :---: | :---: |
 | 
			
		||||
| MMMU<sub>val</sub>  | 56 | 50.4 | **60**| 54.1 | 58.6|
 | 
			
		||||
| MMMU-Pro<sub>val</sub>  | 34.3 | - | 37.6| 30.5 | 41.0|
 | 
			
		||||
| DocVQA<sub>test</sub>  | 93 | 93 | - | 94.5 | **95.7** |
 | 
			
		||||
| InfoVQA<sub>test</sub>  | 77.6 | - |  - |76.5 | **82.6** |
 | 
			
		||||
| ChartQA<sub>test</sub>  | 84.8 | - |- | 83.0 |**87.3** |
 | 
			
		||||
| TextVQA<sub>val</sub>  | 79.1 | 80.1 | -| 84.3 | **84.9**|
 | 
			
		||||
| OCRBench | 822 | 852 | 785 | 845 | **864** |
 | 
			
		||||
| CC_OCR | 57.7 |  | | 61.6 | **77.8**|
 | 
			
		||||
| MMStar | 62.8| | |60.7| **63.9**|
 | 
			
		||||
| MMBench-V1.1-En<sub>test</sub>  | 79.4 | 78.0 | 76.0| 80.7 | **82.6** |
 | 
			
		||||
| MMT-Bench<sub>test</sub> | - | - | - |**63.7** |63.6 |
 | 
			
		||||
| MMStar | **61.5** | 57.5 |  54.8 | 60.7 |63.9 |
 | 
			
		||||
| MMVet<sub>GPT-4-Turbo</sub>  | 54.2 | 60.0 | 66.9 | 62.0 | **67.1**|
 | 
			
		||||
| HallBench<sub>avg</sub>  | 45.2 | 48.1 | 46.1| 50.6 | **52.9**|
 | 
			
		||||
| MathVista<sub>testmini</sub>  | 58.3 | 60.6 | 52.4 | 58.2 | **68.2**|
 | 
			
		||||
| MathVision  | - | -  | - | 16.3 | **25.07** |
 | 
			
		||||
 | 
			
		||||
### Video Benchmarks
 | 
			
		||||
 | 
			
		||||
| Benchmark |  Qwen2-VL-7B | **Qwen2.5-VL-7B** |
 | 
			
		||||
| :--- | :---: | :---: |
 | 
			
		||||
| MVBench |  67.0 | **69.6** |
 | 
			
		||||
| PerceptionTest<sub>test</sub>  | 66.9 | **70.5** |
 | 
			
		||||
| Video-MME<sub>wo/w subs</sub>   | 63.3/69.0 | **65.1**/**71.6** |
 | 
			
		||||
| LVBench  |  | 45.3 |
 | 
			
		||||
| LongVideoBench  |  | 54.7 |
 | 
			
		||||
| MMBench-Video | 1.44 | 1.79 |
 | 
			
		||||
| TempCompass |  | 71.7 |
 | 
			
		||||
| MLVU |  | 70.2 |
 | 
			
		||||
| CharadesSTA/mIoU |  43.6|
 | 
			
		||||
 | 
			
		||||
### Agent benchmark
 | 
			
		||||
| Benchmarks              | Qwen2.5-VL-7B |
 | 
			
		||||
|-------------------------|---------------|
 | 
			
		||||
| ScreenSpot              |     84.7    |
 | 
			
		||||
| ScreenSpot Pro          |     29.0    |
 | 
			
		||||
| AITZ_EM                 |  	81.9    |
 | 
			
		||||
| Android Control High_EM |    	60.1    |
 | 
			
		||||
| Android Control Low_EM  |  	93.7    |
 | 
			
		||||
| AndroidWorld_SR         | 	25.5  	|
 | 
			
		||||
| MobileMiniWob++_SR      | 	91.4    |
 | 
			
		||||
 | 
			
		||||
## Requirements
 | 
			
		||||
The code of Qwen2.5-VL has been in the latest Hugging face transformers and we advise you to build from source with command:
 | 
			
		||||
```
 | 
			
		||||
pip install git+https://github.com/huggingface/transformers accelerate
 | 
			
		||||
```
 | 
			
		||||
or you might encounter the following error:
 | 
			
		||||
```
 | 
			
		||||
KeyError: 'qwen2_5_vl'
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
## Quickstart
 | 
			
		||||
 | 
			
		||||
Below, we provide simple examples to show how to use Qwen2.5-VL with 🤖 ModelScope and 🤗 Transformers.
 | 
			
		||||
 | 
			
		||||
The code of Qwen2.5-VL has been in the latest Hugging face transformers and we advise you to build from source with command:
 | 
			
		||||
```
 | 
			
		||||
pip install git+https://github.com/huggingface/transformers accelerate
 | 
			
		||||
```
 | 
			
		||||
or you might encounter the following error:
 | 
			
		||||
```
 | 
			
		||||
KeyError: 'qwen2_5_vl'
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
We offer a toolkit to help you handle various types of visual input more conveniently, as if you were using an API. This includes base64, URLs, and interleaved images and videos. You can install it using the following command:
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
# It's highly recommanded to use `[decord]` feature for faster video loading.
 | 
			
		||||
pip install qwen-vl-utils[decord]==0.0.8
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
If you are not using Linux, you might not be able to install `decord` from PyPI. In that case, you can use `pip install qwen-vl-utils` which will fall back to using torchvision for video processing. However, you can still [install decord from source](https://github.com/dmlc/decord?tab=readme-ov-file#install-from-source) to get decord used when loading video.
 | 
			
		||||
 | 
			
		||||
### Using 🤗  Transformers to Chat
 | 
			
		||||
 | 
			
		||||
Here we show a code snippet to show you how to use the chat model with `transformers` and `qwen_vl_utils`:
 | 
			
		||||
 | 
			
		||||
```python
 | 
			
		||||
from transformers import Qwen2_5_VLForConditionalGeneration, AutoTokenizer, AutoProcessor
 | 
			
		||||
from qwen_vl_utils import process_vision_info
 | 
			
		||||
 | 
			
		||||
# default: Load the model on the available device(s)
 | 
			
		||||
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
 | 
			
		||||
    "Qwen/Qwen2.5-VL-7B-Instruct", torch_dtype="auto", device_map="auto"
 | 
			
		||||
)
 | 
			
		||||
 | 
			
		||||
# We recommend enabling flash_attention_2 for better acceleration and memory saving, especially in multi-image and video scenarios.
 | 
			
		||||
# model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
 | 
			
		||||
#     "Qwen/Qwen2.5-VL-7B-Instruct",
 | 
			
		||||
#     torch_dtype=torch.bfloat16,
 | 
			
		||||
#     attn_implementation="flash_attention_2",
 | 
			
		||||
#     device_map="auto",
 | 
			
		||||
# )
 | 
			
		||||
 | 
			
		||||
# default processer
 | 
			
		||||
processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct")
 | 
			
		||||
 | 
			
		||||
# The default range for the number of visual tokens per image in the model is 4-16384.
 | 
			
		||||
# You can set min_pixels and max_pixels according to your needs, such as a token range of 256-1280, to balance performance and cost.
 | 
			
		||||
# min_pixels = 256*28*28
 | 
			
		||||
# max_pixels = 1280*28*28
 | 
			
		||||
# processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels)
 | 
			
		||||
 | 
			
		||||
messages = [
 | 
			
		||||
    {
 | 
			
		||||
        "role": "user",
 | 
			
		||||
        "content": [
 | 
			
		||||
            {
 | 
			
		||||
                "type": "image",
 | 
			
		||||
                "image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg",
 | 
			
		||||
            },
 | 
			
		||||
            {"type": "text", "text": "Describe this image."},
 | 
			
		||||
        ],
 | 
			
		||||
    }
 | 
			
		||||
]
 | 
			
		||||
 | 
			
		||||
# Preparation for inference
 | 
			
		||||
text = processor.apply_chat_template(
 | 
			
		||||
    messages, tokenize=False, add_generation_prompt=True
 | 
			
		||||
)
 | 
			
		||||
image_inputs, video_inputs = process_vision_info(messages)
 | 
			
		||||
inputs = processor(
 | 
			
		||||
    text=[text],
 | 
			
		||||
    images=image_inputs,
 | 
			
		||||
    videos=video_inputs,
 | 
			
		||||
    padding=True,
 | 
			
		||||
    return_tensors="pt",
 | 
			
		||||
)
 | 
			
		||||
inputs = inputs.to("cuda")
 | 
			
		||||
 | 
			
		||||
# Inference: Generation of the output
 | 
			
		||||
generated_ids = model.generate(**inputs, max_new_tokens=128)
 | 
			
		||||
generated_ids_trimmed = [
 | 
			
		||||
    out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
 | 
			
		||||
]
 | 
			
		||||
output_text = processor.batch_decode(
 | 
			
		||||
    generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
 | 
			
		||||
)
 | 
			
		||||
print(output_text)
 | 
			
		||||
```
 | 
			
		||||
<details>
 | 
			
		||||
<summary>Multi image inference</summary>
 | 
			
		||||
 | 
			
		||||
```python
 | 
			
		||||
# Messages containing multiple images and a text query
 | 
			
		||||
messages = [
 | 
			
		||||
    {
 | 
			
		||||
        "role": "user",
 | 
			
		||||
        "content": [
 | 
			
		||||
            {"type": "image", "image": "file:///path/to/image1.jpg"},
 | 
			
		||||
            {"type": "image", "image": "file:///path/to/image2.jpg"},
 | 
			
		||||
            {"type": "text", "text": "Identify the similarities between these images."},
 | 
			
		||||
        ],
 | 
			
		||||
    }
 | 
			
		||||
]
 | 
			
		||||
 | 
			
		||||
# Preparation for inference
 | 
			
		||||
text = processor.apply_chat_template(
 | 
			
		||||
    messages, tokenize=False, add_generation_prompt=True
 | 
			
		||||
)
 | 
			
		||||
image_inputs, video_inputs = process_vision_info(messages)
 | 
			
		||||
inputs = processor(
 | 
			
		||||
    text=[text],
 | 
			
		||||
    images=image_inputs,
 | 
			
		||||
    videos=video_inputs,
 | 
			
		||||
    padding=True,
 | 
			
		||||
    return_tensors="pt",
 | 
			
		||||
)
 | 
			
		||||
inputs = inputs.to("cuda")
 | 
			
		||||
 | 
			
		||||
# Inference
 | 
			
		||||
generated_ids = model.generate(**inputs, max_new_tokens=128)
 | 
			
		||||
generated_ids_trimmed = [
 | 
			
		||||
    out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
 | 
			
		||||
]
 | 
			
		||||
output_text = processor.batch_decode(
 | 
			
		||||
    generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
 | 
			
		||||
)
 | 
			
		||||
print(output_text)
 | 
			
		||||
```
 | 
			
		||||
</details>
 | 
			
		||||
 | 
			
		||||
<details>
 | 
			
		||||
<summary>Video inference</summary>
 | 
			
		||||
 | 
			
		||||
```python
 | 
			
		||||
# Messages containing a images list as a video and a text query
 | 
			
		||||
messages = [
 | 
			
		||||
    {
 | 
			
		||||
        "role": "user",
 | 
			
		||||
        "content": [
 | 
			
		||||
            {
 | 
			
		||||
                "type": "video",
 | 
			
		||||
                "video": [
 | 
			
		||||
                    "file:///path/to/frame1.jpg",
 | 
			
		||||
                    "file:///path/to/frame2.jpg",
 | 
			
		||||
                    "file:///path/to/frame3.jpg",
 | 
			
		||||
                    "file:///path/to/frame4.jpg",
 | 
			
		||||
                ],
 | 
			
		||||
            },
 | 
			
		||||
            {"type": "text", "text": "Describe this video."},
 | 
			
		||||
        ],
 | 
			
		||||
    }
 | 
			
		||||
]
 | 
			
		||||
 | 
			
		||||
# Messages containing a local video path and a text query
 | 
			
		||||
messages = [
 | 
			
		||||
    {
 | 
			
		||||
        "role": "user",
 | 
			
		||||
        "content": [
 | 
			
		||||
            {
 | 
			
		||||
                "type": "video",
 | 
			
		||||
                "video": "file:///path/to/video1.mp4",
 | 
			
		||||
                "max_pixels": 360 * 420,
 | 
			
		||||
                "fps": 1.0,
 | 
			
		||||
            },
 | 
			
		||||
            {"type": "text", "text": "Describe this video."},
 | 
			
		||||
        ],
 | 
			
		||||
    }
 | 
			
		||||
]
 | 
			
		||||
 | 
			
		||||
# Messages containing a video url and a text query
 | 
			
		||||
messages = [
 | 
			
		||||
    {
 | 
			
		||||
        "role": "user",
 | 
			
		||||
        "content": [
 | 
			
		||||
            {
 | 
			
		||||
                "type": "video",
 | 
			
		||||
                "video": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2-VL/space_woaudio.mp4",
 | 
			
		||||
            },
 | 
			
		||||
            {"type": "text", "text": "Describe this video."},
 | 
			
		||||
        ],
 | 
			
		||||
    }
 | 
			
		||||
]
 | 
			
		||||
 | 
			
		||||
#In Qwen 2.5 VL, frame rate information is also input into the model to align with absolute time.
 | 
			
		||||
# Preparation for inference
 | 
			
		||||
text = processor.apply_chat_template(
 | 
			
		||||
    messages, tokenize=False, add_generation_prompt=True
 | 
			
		||||
)
 | 
			
		||||
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)
 | 
			
		||||
inputs = processor(
 | 
			
		||||
    text=[text],
 | 
			
		||||
    images=image_inputs,
 | 
			
		||||
    videos=video_inputs,
 | 
			
		||||
    fps=fps,
 | 
			
		||||
    padding=True,
 | 
			
		||||
    return_tensors="pt",
 | 
			
		||||
    **video_kwargs,
 | 
			
		||||
)
 | 
			
		||||
inputs = inputs.to("cuda")
 | 
			
		||||
 | 
			
		||||
# Inference
 | 
			
		||||
generated_ids = model.generate(**inputs, max_new_tokens=128)
 | 
			
		||||
generated_ids_trimmed = [
 | 
			
		||||
    out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
 | 
			
		||||
]
 | 
			
		||||
output_text = processor.batch_decode(
 | 
			
		||||
    generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
 | 
			
		||||
)
 | 
			
		||||
print(output_text)
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
Video URL compatibility largely depends on the third-party library version. The details are in the table below. change the backend by `FORCE_QWENVL_VIDEO_READER=torchvision` or `FORCE_QWENVL_VIDEO_READER=decord` if you prefer not to use the default one.
 | 
			
		||||
 | 
			
		||||
| Backend     | HTTP | HTTPS |
 | 
			
		||||
|-------------|------|-------|
 | 
			
		||||
| torchvision >= 0.19.0 | ✅  | ✅   |
 | 
			
		||||
| torchvision < 0.19.0  | ❌  | ❌   |
 | 
			
		||||
| decord      | ✅  | ❌   |
 | 
			
		||||
</details>
 | 
			
		||||
 | 
			
		||||
<details>
 | 
			
		||||
<summary>Batch inference</summary>
 | 
			
		||||
 | 
			
		||||
```python
 | 
			
		||||
# Sample messages for batch inference
 | 
			
		||||
messages1 = [
 | 
			
		||||
    {
 | 
			
		||||
        "role": "user",
 | 
			
		||||
        "content": [
 | 
			
		||||
            {"type": "image", "image": "file:///path/to/image1.jpg"},
 | 
			
		||||
            {"type": "image", "image": "file:///path/to/image2.jpg"},
 | 
			
		||||
            {"type": "text", "text": "What are the common elements in these pictures?"},
 | 
			
		||||
        ],
 | 
			
		||||
    }
 | 
			
		||||
]
 | 
			
		||||
messages2 = [
 | 
			
		||||
    {"role": "system", "content": "You are a helpful assistant."},
 | 
			
		||||
    {"role": "user", "content": "Who are you?"},
 | 
			
		||||
]
 | 
			
		||||
# Combine messages for batch processing
 | 
			
		||||
messages = [messages1, messages2]
 | 
			
		||||
 | 
			
		||||
# Preparation for batch inference
 | 
			
		||||
texts = [
 | 
			
		||||
    processor.apply_chat_template(msg, tokenize=False, add_generation_prompt=True)
 | 
			
		||||
    for msg in messages
 | 
			
		||||
]
 | 
			
		||||
image_inputs, video_inputs = process_vision_info(messages)
 | 
			
		||||
inputs = processor(
 | 
			
		||||
    text=texts,
 | 
			
		||||
    images=image_inputs,
 | 
			
		||||
    videos=video_inputs,
 | 
			
		||||
    padding=True,
 | 
			
		||||
    return_tensors="pt",
 | 
			
		||||
)
 | 
			
		||||
inputs = inputs.to("cuda")
 | 
			
		||||
 | 
			
		||||
# Batch Inference
 | 
			
		||||
generated_ids = model.generate(**inputs, max_new_tokens=128)
 | 
			
		||||
generated_ids_trimmed = [
 | 
			
		||||
    out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
 | 
			
		||||
]
 | 
			
		||||
output_texts = processor.batch_decode(
 | 
			
		||||
    generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
 | 
			
		||||
)
 | 
			
		||||
print(output_texts)
 | 
			
		||||
```
 | 
			
		||||
</details>
 | 
			
		||||
 | 
			
		||||
### 🤖 ModelScope
 | 
			
		||||
We strongly advise users especially those in mainland China to use ModelScope. `snapshot_download` can help you solve issues concerning downloading checkpoints.
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
### More Usage Tips
 | 
			
		||||
 | 
			
		||||
For input images, we support local files, base64, and URLs. For videos, we currently only support local files.
 | 
			
		||||
 | 
			
		||||
```python
 | 
			
		||||
# You can directly insert a local file path, a URL, or a base64-encoded image into the position where you want in the text.
 | 
			
		||||
## Local file path
 | 
			
		||||
messages = [
 | 
			
		||||
    {
 | 
			
		||||
        "role": "user",
 | 
			
		||||
        "content": [
 | 
			
		||||
            {"type": "image", "image": "file:///path/to/your/image.jpg"},
 | 
			
		||||
            {"type": "text", "text": "Describe this image."},
 | 
			
		||||
        ],
 | 
			
		||||
    }
 | 
			
		||||
]
 | 
			
		||||
## Image URL
 | 
			
		||||
messages = [
 | 
			
		||||
    {
 | 
			
		||||
        "role": "user",
 | 
			
		||||
        "content": [
 | 
			
		||||
            {"type": "image", "image": "http://path/to/your/image.jpg"},
 | 
			
		||||
            {"type": "text", "text": "Describe this image."},
 | 
			
		||||
        ],
 | 
			
		||||
    }
 | 
			
		||||
]
 | 
			
		||||
## Base64 encoded image
 | 
			
		||||
messages = [
 | 
			
		||||
    {
 | 
			
		||||
        "role": "user",
 | 
			
		||||
        "content": [
 | 
			
		||||
            {"type": "image", "image": "data:image;base64,/9j/..."},
 | 
			
		||||
            {"type": "text", "text": "Describe this image."},
 | 
			
		||||
        ],
 | 
			
		||||
    }
 | 
			
		||||
]
 | 
			
		||||
```
 | 
			
		||||
#### Image Resolution for performance boost
 | 
			
		||||
 | 
			
		||||
The model supports a wide range of resolution inputs. By default, it uses the native resolution for input, but higher resolutions can enhance performance at the cost of more computation. Users can set the minimum and maximum number of pixels to achieve an optimal configuration for their needs, such as a token count range of 256-1280, to balance speed and memory usage.
 | 
			
		||||
 | 
			
		||||
```python
 | 
			
		||||
min_pixels = 256 * 28 * 28
 | 
			
		||||
max_pixels = 1280 * 28 * 28
 | 
			
		||||
processor = AutoProcessor.from_pretrained(
 | 
			
		||||
    "Qwen/Qwen2.5-VL-7B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels
 | 
			
		||||
)
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
Besides, We provide two methods for fine-grained control over the image size input to the model:
 | 
			
		||||
 | 
			
		||||
1. Define min_pixels and max_pixels: Images will be resized to maintain their aspect ratio within the range of min_pixels and max_pixels.
 | 
			
		||||
   
 | 
			
		||||
2. Specify exact dimensions: Directly set `resized_height` and `resized_width`. These values will be rounded to the nearest multiple of 28.
 | 
			
		||||
 | 
			
		||||
```python
 | 
			
		||||
# min_pixels and max_pixels
 | 
			
		||||
messages = [
 | 
			
		||||
    {
 | 
			
		||||
        "role": "user",
 | 
			
		||||
        "content": [
 | 
			
		||||
            {
 | 
			
		||||
                "type": "image",
 | 
			
		||||
                "image": "file:///path/to/your/image.jpg",
 | 
			
		||||
                "resized_height": 280,
 | 
			
		||||
                "resized_width": 420,
 | 
			
		||||
            },
 | 
			
		||||
            {"type": "text", "text": "Describe this image."},
 | 
			
		||||
        ],
 | 
			
		||||
    }
 | 
			
		||||
]
 | 
			
		||||
# resized_height and resized_width
 | 
			
		||||
messages = [
 | 
			
		||||
    {
 | 
			
		||||
        "role": "user",
 | 
			
		||||
        "content": [
 | 
			
		||||
            {
 | 
			
		||||
                "type": "image",
 | 
			
		||||
                "image": "file:///path/to/your/image.jpg",
 | 
			
		||||
                "min_pixels": 50176,
 | 
			
		||||
                "max_pixels": 50176,
 | 
			
		||||
            },
 | 
			
		||||
            {"type": "text", "text": "Describe this image."},
 | 
			
		||||
        ],
 | 
			
		||||
    }
 | 
			
		||||
]
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
### Processing Long Texts
 | 
			
		||||
 | 
			
		||||
The current `config.json` is set for context length up to 32,768 tokens.
 | 
			
		||||
To handle extensive inputs exceeding 32,768 tokens, we utilize [YaRN](https://arxiv.org/abs/2309.00071), a technique for enhancing model length extrapolation, ensuring optimal performance on lengthy texts.
 | 
			
		||||
 | 
			
		||||
For supported frameworks, you could add the following to `config.json` to enable YaRN:
 | 
			
		||||
 | 
			
		||||
{
 | 
			
		||||
	...,
 | 
			
		||||
    "type": "yarn",
 | 
			
		||||
    "mrope_section": [
 | 
			
		||||
        16,
 | 
			
		||||
        24,
 | 
			
		||||
        24
 | 
			
		||||
    ],
 | 
			
		||||
    "factor": 4,
 | 
			
		||||
    "original_max_position_embeddings": 32768
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
However, it should be noted that this method has a significant impact on the performance of temporal and spatial localization tasks, and is therefore not recommended for use.
 | 
			
		||||
 | 
			
		||||
At the same time, for long video inputs, since MRoPE itself is more economical with ids, the max_position_embeddings can be directly modified to a larger value, such as 64k.
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
## Citation
 | 
			
		||||
 | 
			
		||||
If you find our work helpful, feel free to give us a cite.
 | 
			
		||||
 | 
			
		||||
```
 | 
			
		||||
@misc{qwen2.5-VL,
 | 
			
		||||
    title = {Qwen2.5-VL},
 | 
			
		||||
    url = {https://qwenlm.github.io/blog/qwen2.5-vl/},
 | 
			
		||||
    author = {Qwen Team},
 | 
			
		||||
    month = {January},
 | 
			
		||||
    year = {2025}
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
@article{Qwen2VL,
 | 
			
		||||
  title={Qwen2-VL: Enhancing Vision-Language Model's Perception of the World at Any Resolution},
 | 
			
		||||
  author={Wang, Peng and Bai, Shuai and Tan, Sinan and Wang, Shijie and Fan, Zhihao and Bai, Jinze and Chen, Keqin and Liu, Xuejing and Wang, Jialin and Ge, Wenbin and Fan, Yang and Dang, Kai and Du, Mengfei and Ren, Xuancheng and Men, Rui and Liu, Dayiheng and Zhou, Chang and Zhou, Jingren and Lin, Junyang},
 | 
			
		||||
  journal={arXiv preprint arXiv:2409.12191},
 | 
			
		||||
  year={2024}
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
@article{Qwen-VL,
 | 
			
		||||
  title={Qwen-VL: A Versatile Vision-Language Model for Understanding, Localization, Text Reading, and Beyond},
 | 
			
		||||
  author={Bai, Jinze and Bai, Shuai and Yang, Shusheng and Wang, Shijie and Tan, Sinan and Wang, Peng and Lin, Junyang and Zhou, Chang and Zhou, Jingren},
 | 
			
		||||
  journal={arXiv preprint arXiv:2308.12966},
 | 
			
		||||
  year={2023}
 | 
			
		||||
}
 | 
			
		||||
```
 | 
			
		||||
@ -1,3 +0,0 @@
 | 
			
		||||
{
 | 
			
		||||
    "chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}"
 | 
			
		||||
}
 | 
			
		||||
							
								
								
									
										61
									
								
								config.json
									
									
									
									
									
								
							
							
						
						
									
										61
									
								
								config.json
									
									
									
									
									
								
							@ -1,61 +0,0 @@
 | 
			
		||||
{
 | 
			
		||||
  "architectures": [
 | 
			
		||||
    "Qwen2_5_VLForConditionalGeneration"
 | 
			
		||||
  ],
 | 
			
		||||
  "attention_dropout": 0.0,
 | 
			
		||||
  "bos_token_id": 151643,
 | 
			
		||||
  "eos_token_id": 151645,
 | 
			
		||||
  "vision_start_token_id": 151652,
 | 
			
		||||
  "vision_end_token_id": 151653,
 | 
			
		||||
  "vision_token_id": 151654,
 | 
			
		||||
  "image_token_id": 151655,
 | 
			
		||||
  "video_token_id": 151656,
 | 
			
		||||
  "hidden_act": "silu",
 | 
			
		||||
  "hidden_size": 3584,
 | 
			
		||||
  "initializer_range": 0.02,
 | 
			
		||||
  "intermediate_size": 18944,
 | 
			
		||||
  "max_position_embeddings": 128000,
 | 
			
		||||
  "max_window_layers": 28,
 | 
			
		||||
  "model_type": "qwen2_5_vl",
 | 
			
		||||
  "num_attention_heads": 28,
 | 
			
		||||
  "num_hidden_layers": 28,
 | 
			
		||||
  "num_key_value_heads": 4,
 | 
			
		||||
  "rms_norm_eps": 1e-06,
 | 
			
		||||
  "rope_theta": 1000000.0,
 | 
			
		||||
  "sliding_window": 32768,
 | 
			
		||||
  "tie_word_embeddings": false,
 | 
			
		||||
  "torch_dtype": "bfloat16",
 | 
			
		||||
  "transformers_version": "4.41.2",
 | 
			
		||||
  "use_cache": true,
 | 
			
		||||
  "use_sliding_window": false,
 | 
			
		||||
  "vision_config": {
 | 
			
		||||
    "depth": 32,
 | 
			
		||||
    "hidden_act": "silu",
 | 
			
		||||
    "hidden_size": 1280,
 | 
			
		||||
    "intermediate_size": 3420,
 | 
			
		||||
    "num_heads": 16,
 | 
			
		||||
    "in_chans": 3,
 | 
			
		||||
    "out_hidden_size": 3584,
 | 
			
		||||
    "patch_size": 14,
 | 
			
		||||
    "spatial_merge_size": 2,
 | 
			
		||||
    "spatial_patch_size": 14,
 | 
			
		||||
    "window_size": 112,
 | 
			
		||||
    "fullatt_block_indexes": [
 | 
			
		||||
      7,
 | 
			
		||||
      15,
 | 
			
		||||
      23,
 | 
			
		||||
      31
 | 
			
		||||
    ],
 | 
			
		||||
    "tokens_per_second": 2,
 | 
			
		||||
    "temporal_patch_size": 2
 | 
			
		||||
  },
 | 
			
		||||
  "rope_scaling": {
 | 
			
		||||
    "type": "mrope",
 | 
			
		||||
    "mrope_section": [
 | 
			
		||||
      16,
 | 
			
		||||
      24,
 | 
			
		||||
      24
 | 
			
		||||
    ]
 | 
			
		||||
  },
 | 
			
		||||
  "vocab_size": 152064
 | 
			
		||||
}
 | 
			
		||||
@ -1 +0,0 @@
 | 
			
		||||
{"framework": "pytorch", "task": "vision-understanding", "allow_remote": true}
 | 
			
		||||
@ -1,12 +0,0 @@
 | 
			
		||||
{
 | 
			
		||||
  "bos_token_id": 151643,
 | 
			
		||||
  "pad_token_id": 151643,
 | 
			
		||||
  "do_sample": true,
 | 
			
		||||
  "eos_token_id": [
 | 
			
		||||
    151645,
 | 
			
		||||
    151643
 | 
			
		||||
  ],
 | 
			
		||||
  "repetition_penalty": 1.05,
 | 
			
		||||
  "temperature": 0.000001,
 | 
			
		||||
  "transformers_version": "4.37.0"
 | 
			
		||||
}
 | 
			
		||||
							
								
								
									
										151387
									
								
								merges.txt
									
									
									
									
									
								
							
							
						
						
									
										151387
									
								
								merges.txt
									
									
									
									
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
							
								
								
									
										
											BIN
										
									
								
								model-00001-of-00005.safetensors
									 (Stored with Git LFS)
									
									
									
									
								
							
							
						
						
									
										
											BIN
										
									
								
								model-00001-of-00005.safetensors
									 (Stored with Git LFS)
									
									
									
									
								
							
										
											Binary file not shown.
										
									
								
							
							
								
								
									
										
											BIN
										
									
								
								model-00002-of-00005.safetensors
									 (Stored with Git LFS)
									
									
									
									
								
							
							
						
						
									
										
											BIN
										
									
								
								model-00002-of-00005.safetensors
									 (Stored with Git LFS)
									
									
									
									
								
							
										
											Binary file not shown.
										
									
								
							
							
								
								
									
										
											BIN
										
									
								
								model-00003-of-00005.safetensors
									 (Stored with Git LFS)
									
									
									
									
								
							
							
						
						
									
										
											BIN
										
									
								
								model-00003-of-00005.safetensors
									 (Stored with Git LFS)
									
									
									
									
								
							
										
											Binary file not shown.
										
									
								
							
							
								
								
									
										
											BIN
										
									
								
								model-00004-of-00005.safetensors
									 (Stored with Git LFS)
									
									
									
									
								
							
							
						
						
									
										
											BIN
										
									
								
								model-00004-of-00005.safetensors
									 (Stored with Git LFS)
									
									
									
									
								
							
										
											Binary file not shown.
										
									
								
							
							
								
								
									
										
											BIN
										
									
								
								model-00005-of-00005.safetensors
									 (Stored with Git LFS)
									
									
									
									
								
							
							
						
						
									
										
											BIN
										
									
								
								model-00005-of-00005.safetensors
									 (Stored with Git LFS)
									
									
									
									
								
							
										
											Binary file not shown.
										
									
								
							@ -1,736 +0,0 @@
 | 
			
		||||
{
 | 
			
		||||
  "metadata": {
 | 
			
		||||
    "total_size": 16584333312
 | 
			
		||||
  },
 | 
			
		||||
  "weight_map": {
 | 
			
		||||
    "lm_head.weight": "model-00005-of-00005.safetensors",
 | 
			
		||||
    "model.embed_tokens.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "model.layers.0.input_layernorm.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "model.layers.0.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "model.layers.0.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "model.layers.1.input_layernorm.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "model.layers.1.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "model.layers.1.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "model.layers.10.input_layernorm.weight": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.layers.10.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.layers.10.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.layers.10.self_attn.k_proj.bias": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.layers.10.self_attn.q_proj.bias": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.layers.10.self_attn.v_proj.bias": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.layers.11.input_layernorm.weight": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.layers.11.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.11.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.11.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.layers.11.self_attn.k_proj.bias": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.layers.11.self_attn.q_proj.bias": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.layers.11.self_attn.v_proj.bias": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.layers.12.input_layernorm.weight": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.12.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.12.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.12.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.12.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.12.self_attn.k_proj.bias": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.12.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.12.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.12.self_attn.q_proj.bias": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.12.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.12.self_attn.v_proj.bias": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.12.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.13.input_layernorm.weight": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.13.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.13.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.13.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.13.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.13.self_attn.k_proj.bias": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.13.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.13.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.13.self_attn.q_proj.bias": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.13.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.13.self_attn.v_proj.bias": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.13.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.14.input_layernorm.weight": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.14.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.14.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.14.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.14.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.14.self_attn.k_proj.bias": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.14.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.14.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.14.self_attn.q_proj.bias": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.14.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.14.self_attn.v_proj.bias": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.14.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.15.input_layernorm.weight": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.15.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.15.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.15.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.15.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.15.self_attn.k_proj.bias": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.15.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.15.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.15.self_attn.q_proj.bias": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.15.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.15.self_attn.v_proj.bias": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.15.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.16.input_layernorm.weight": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.16.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.16.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.16.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.16.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.16.self_attn.k_proj.bias": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.16.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.16.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.16.self_attn.q_proj.bias": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.16.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.16.self_attn.v_proj.bias": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.16.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.17.input_layernorm.weight": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.17.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.17.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.17.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.17.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.17.self_attn.k_proj.bias": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.17.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.17.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.17.self_attn.q_proj.bias": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.17.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.17.self_attn.v_proj.bias": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.17.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.18.input_layernorm.weight": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.18.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.18.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.18.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.18.self_attn.k_proj.bias": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.18.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.18.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.18.self_attn.q_proj.bias": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.18.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.18.self_attn.v_proj.bias": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.18.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.19.input_layernorm.weight": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.19.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.19.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.19.self_attn.k_proj.bias": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.19.self_attn.q_proj.bias": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.19.self_attn.v_proj.bias": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
 | 
			
		||||
    "model.layers.2.input_layernorm.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "model.layers.2.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "model.layers.2.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "model.layers.20.input_layernorm.weight": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.20.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.20.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.20.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.20.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.20.self_attn.k_proj.bias": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.20.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.20.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.20.self_attn.q_proj.bias": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.20.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.20.self_attn.v_proj.bias": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.20.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.21.input_layernorm.weight": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.21.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.21.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.21.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.21.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.21.self_attn.k_proj.bias": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.21.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.21.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.21.self_attn.q_proj.bias": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.21.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.21.self_attn.v_proj.bias": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.21.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.22.input_layernorm.weight": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.22.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.22.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.22.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.22.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.22.self_attn.k_proj.bias": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.22.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.22.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.22.self_attn.q_proj.bias": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.22.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.22.self_attn.v_proj.bias": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.22.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.23.input_layernorm.weight": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.23.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.23.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.23.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.23.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.23.self_attn.k_proj.bias": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.23.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.23.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.23.self_attn.q_proj.bias": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.23.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.23.self_attn.v_proj.bias": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.23.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.24.input_layernorm.weight": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.24.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.24.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.24.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.24.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.24.self_attn.k_proj.bias": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.24.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.24.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.24.self_attn.q_proj.bias": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.24.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.24.self_attn.v_proj.bias": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.24.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.25.input_layernorm.weight": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.25.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.25.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.25.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.25.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.25.self_attn.k_proj.bias": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.25.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.25.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.25.self_attn.q_proj.bias": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.25.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.25.self_attn.v_proj.bias": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.25.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.26.input_layernorm.weight": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.26.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.26.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.26.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.26.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.26.self_attn.k_proj.bias": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.26.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.26.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.26.self_attn.q_proj.bias": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.26.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.26.self_attn.v_proj.bias": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.26.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.27.input_layernorm.weight": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.27.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.27.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.27.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.27.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.27.self_attn.k_proj.bias": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.27.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.27.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.27.self_attn.q_proj.bias": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.27.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.27.self_attn.v_proj.bias": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.27.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "model.layers.3.input_layernorm.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "model.layers.3.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.layers.3.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.layers.3.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "model.layers.4.input_layernorm.weight": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.layers.4.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.layers.4.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.layers.4.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.layers.4.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.layers.4.self_attn.k_proj.bias": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.layers.4.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.layers.4.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.layers.4.self_attn.q_proj.bias": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.layers.4.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.layers.4.self_attn.v_proj.bias": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.layers.4.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.layers.5.input_layernorm.weight": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.layers.5.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.layers.5.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.layers.5.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.layers.5.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.layers.5.self_attn.k_proj.bias": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.layers.5.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.layers.5.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.layers.5.self_attn.q_proj.bias": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.layers.5.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.layers.5.self_attn.v_proj.bias": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.layers.5.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.layers.6.input_layernorm.weight": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.layers.6.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.layers.6.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.layers.6.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.layers.6.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.layers.6.self_attn.k_proj.bias": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.layers.6.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.layers.6.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.layers.6.self_attn.q_proj.bias": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.layers.6.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.layers.6.self_attn.v_proj.bias": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.layers.6.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.layers.7.input_layernorm.weight": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.layers.7.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.layers.7.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.layers.7.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.layers.7.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.layers.7.self_attn.k_proj.bias": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.layers.7.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.layers.7.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.layers.7.self_attn.q_proj.bias": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.layers.7.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.layers.7.self_attn.v_proj.bias": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.layers.7.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.layers.8.input_layernorm.weight": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.layers.8.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.layers.8.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.layers.8.self_attn.k_proj.bias": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.layers.8.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.layers.8.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.layers.8.self_attn.q_proj.bias": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.layers.8.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.layers.8.self_attn.v_proj.bias": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.layers.8.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.layers.9.input_layernorm.weight": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.layers.9.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.layers.9.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.layers.9.self_attn.k_proj.bias": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.layers.9.self_attn.q_proj.bias": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.layers.9.self_attn.v_proj.bias": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
 | 
			
		||||
    "model.norm.weight": "model-00004-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.0.attn.proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.0.attn.proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.0.attn.qkv.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.0.attn.qkv.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.0.mlp.down_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.0.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.0.mlp.gate_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.0.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.0.mlp.up_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.0.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.0.norm1.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.0.norm2.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.1.attn.proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.1.attn.proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.1.attn.qkv.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.1.attn.qkv.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.1.mlp.down_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.1.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.1.mlp.gate_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.1.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.1.mlp.up_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.1.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.1.norm1.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.1.norm2.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.10.attn.proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.10.attn.proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.10.attn.qkv.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.10.attn.qkv.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.10.mlp.down_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.10.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.10.mlp.gate_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.10.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.10.mlp.up_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.10.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.10.norm1.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.10.norm2.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.11.attn.proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.11.attn.proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.11.attn.qkv.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.11.attn.qkv.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.11.mlp.down_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.11.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.11.mlp.gate_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.11.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.11.mlp.up_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.11.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.11.norm1.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.11.norm2.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.12.attn.proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.12.attn.proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.12.attn.qkv.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.12.attn.qkv.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.12.mlp.down_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.12.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.12.mlp.gate_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.12.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.12.mlp.up_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.12.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.12.norm1.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.12.norm2.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.13.attn.proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.13.attn.proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.13.attn.qkv.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.13.attn.qkv.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.13.mlp.down_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.13.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.13.mlp.gate_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.13.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.13.mlp.up_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.13.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.13.norm1.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.13.norm2.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.14.attn.proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.14.attn.proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.14.attn.qkv.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.14.attn.qkv.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.14.mlp.down_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.14.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.14.mlp.gate_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.14.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.14.mlp.up_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.14.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.14.norm1.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.14.norm2.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.15.attn.proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.15.attn.proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.15.attn.qkv.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.15.attn.qkv.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.15.mlp.down_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.15.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.15.mlp.gate_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.15.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.15.mlp.up_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.15.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.15.norm1.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.15.norm2.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.16.attn.proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.16.attn.proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.16.attn.qkv.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.16.attn.qkv.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.16.mlp.down_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.16.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.16.mlp.gate_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.16.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.16.mlp.up_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.16.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.16.norm1.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.16.norm2.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.17.attn.proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.17.attn.proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.17.attn.qkv.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.17.attn.qkv.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.17.mlp.down_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.17.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.17.mlp.gate_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.17.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.17.mlp.up_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.17.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.17.norm1.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.17.norm2.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.18.attn.proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.18.attn.proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.18.attn.qkv.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.18.attn.qkv.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.18.mlp.down_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.18.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.18.mlp.gate_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.18.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.18.mlp.up_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.18.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.18.norm1.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.18.norm2.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.19.attn.proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.19.attn.proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.19.attn.qkv.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.19.attn.qkv.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.19.mlp.down_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.19.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.19.mlp.gate_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.19.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.19.mlp.up_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.19.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.19.norm1.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.19.norm2.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.2.attn.proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.2.attn.proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.2.attn.qkv.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.2.attn.qkv.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.2.mlp.down_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.2.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.2.mlp.gate_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.2.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.2.mlp.up_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.2.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.2.norm1.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.2.norm2.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.20.attn.proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.20.attn.proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.20.attn.qkv.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.20.attn.qkv.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.20.mlp.down_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.20.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.20.mlp.gate_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.20.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.20.mlp.up_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.20.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.20.norm1.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.20.norm2.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.21.attn.proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.21.attn.proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.21.attn.qkv.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.21.attn.qkv.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.21.mlp.down_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.21.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.21.mlp.gate_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.21.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.21.mlp.up_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.21.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.21.norm1.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.21.norm2.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.22.attn.proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.22.attn.proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.22.attn.qkv.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.22.attn.qkv.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.22.mlp.down_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.22.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.22.mlp.gate_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.22.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.22.mlp.up_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.22.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.22.norm1.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.22.norm2.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.23.attn.proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.23.attn.proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.23.attn.qkv.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.23.attn.qkv.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.23.mlp.down_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.23.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.23.mlp.gate_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.23.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.23.mlp.up_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.23.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.23.norm1.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.23.norm2.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.24.attn.proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.24.attn.proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.24.attn.qkv.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.24.attn.qkv.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.24.mlp.down_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.24.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.24.mlp.gate_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.24.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.24.mlp.up_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.24.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.24.norm1.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.24.norm2.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.25.attn.proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.25.attn.proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.25.attn.qkv.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.25.attn.qkv.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.25.mlp.down_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.25.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.25.mlp.gate_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.25.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.25.mlp.up_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.25.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.25.norm1.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.25.norm2.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.26.attn.proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.26.attn.proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.26.attn.qkv.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.26.attn.qkv.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.26.mlp.down_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.26.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.26.mlp.gate_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.26.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.26.mlp.up_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.26.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.26.norm1.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.26.norm2.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.27.attn.proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.27.attn.proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.27.attn.qkv.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.27.attn.qkv.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.27.mlp.down_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.27.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.27.mlp.gate_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.27.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.27.mlp.up_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.27.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.27.norm1.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.27.norm2.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.28.attn.proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.28.attn.proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.28.attn.qkv.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.28.attn.qkv.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.28.mlp.down_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.28.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.28.mlp.gate_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.28.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.28.mlp.up_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.28.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.28.norm1.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.28.norm2.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.29.attn.proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.29.attn.proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.29.attn.qkv.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.29.attn.qkv.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.29.mlp.down_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.29.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.29.mlp.gate_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.29.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.29.mlp.up_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.29.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.29.norm1.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.29.norm2.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.3.attn.proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.3.attn.proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.3.attn.qkv.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.3.attn.qkv.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.3.mlp.down_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.3.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.3.mlp.gate_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.3.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.3.mlp.up_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.3.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.3.norm1.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.3.norm2.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.30.attn.proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.30.attn.proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.30.attn.qkv.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.30.attn.qkv.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.30.mlp.down_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.30.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.30.mlp.gate_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.30.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.30.mlp.up_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.30.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.30.norm1.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.30.norm2.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.31.attn.proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.31.attn.proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.31.attn.qkv.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.31.attn.qkv.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.31.mlp.down_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.31.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.31.mlp.gate_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.31.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.31.mlp.up_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.31.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.31.norm1.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.31.norm2.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.4.attn.proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.4.attn.proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.4.attn.qkv.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.4.attn.qkv.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.4.mlp.down_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.4.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.4.mlp.gate_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.4.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.4.mlp.up_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.4.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.4.norm1.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.4.norm2.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.5.attn.proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.5.attn.proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.5.attn.qkv.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.5.attn.qkv.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.5.mlp.down_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.5.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.5.mlp.gate_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.5.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.5.mlp.up_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.5.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.5.norm1.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.5.norm2.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.6.attn.proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.6.attn.proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.6.attn.qkv.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.6.attn.qkv.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.6.mlp.down_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.6.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.6.mlp.gate_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.6.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.6.mlp.up_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.6.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.6.norm1.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.6.norm2.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.7.attn.proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.7.attn.proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.7.attn.qkv.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.7.attn.qkv.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.7.mlp.down_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.7.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.7.mlp.gate_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.7.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.7.mlp.up_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.7.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.7.norm1.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.7.norm2.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.8.attn.proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.8.attn.proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.8.attn.qkv.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.8.attn.qkv.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.8.mlp.down_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.8.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.8.mlp.gate_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.8.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.8.mlp.up_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.8.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.8.norm1.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.8.norm2.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.9.attn.proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.9.attn.proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.9.attn.qkv.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.9.attn.qkv.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.9.mlp.down_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.9.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.9.mlp.gate_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.9.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.9.mlp.up_proj.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.9.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.9.norm1.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.blocks.9.norm2.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.merger.ln_q.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.merger.mlp.0.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.merger.mlp.0.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.merger.mlp.2.bias": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.merger.mlp.2.weight": "model-00001-of-00005.safetensors",
 | 
			
		||||
    "visual.patch_embed.proj.weight": "model-00001-of-00005.safetensors"
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
@ -1,19 +0,0 @@
 | 
			
		||||
{
 | 
			
		||||
  "min_pixels": 3136,
 | 
			
		||||
  "max_pixels": 12845056,
 | 
			
		||||
  "patch_size": 14,
 | 
			
		||||
  "temporal_patch_size": 2,
 | 
			
		||||
  "merge_size": 2,
 | 
			
		||||
  "image_mean": [
 | 
			
		||||
    0.48145466,
 | 
			
		||||
    0.4578275,
 | 
			
		||||
    0.40821073
 | 
			
		||||
  ],
 | 
			
		||||
  "image_std": [
 | 
			
		||||
    0.26862954,
 | 
			
		||||
    0.26130258,
 | 
			
		||||
    0.27577711
 | 
			
		||||
  ],
 | 
			
		||||
  "image_processor_type": "Qwen2VLImageProcessor",
 | 
			
		||||
  "processor_class": "Qwen2_5_VLProcessor"
 | 
			
		||||
}
 | 
			
		||||
							
								
								
									
										303282
									
								
								tokenizer.json
									
									
									
									
									
								
							
							
						
						
									
										303282
									
								
								tokenizer.json
									
									
									
									
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							@ -1,207 +0,0 @@
 | 
			
		||||
{
 | 
			
		||||
  "add_prefix_space": false,
 | 
			
		||||
  "added_tokens_decoder": {
 | 
			
		||||
    "151643": {
 | 
			
		||||
      "content": "<|endoftext|>",
 | 
			
		||||
      "lstrip": false,
 | 
			
		||||
      "normalized": false,
 | 
			
		||||
      "rstrip": false,
 | 
			
		||||
      "single_word": false,
 | 
			
		||||
      "special": true
 | 
			
		||||
    },
 | 
			
		||||
    "151644": {
 | 
			
		||||
      "content": "<|im_start|>",
 | 
			
		||||
      "lstrip": false,
 | 
			
		||||
      "normalized": false,
 | 
			
		||||
      "rstrip": false,
 | 
			
		||||
      "single_word": false,
 | 
			
		||||
      "special": true
 | 
			
		||||
    },
 | 
			
		||||
    "151645": {
 | 
			
		||||
      "content": "<|im_end|>",
 | 
			
		||||
      "lstrip": false,
 | 
			
		||||
      "normalized": false,
 | 
			
		||||
      "rstrip": false,
 | 
			
		||||
      "single_word": false,
 | 
			
		||||
      "special": true
 | 
			
		||||
    },
 | 
			
		||||
    "151646": {
 | 
			
		||||
      "content": "<|object_ref_start|>",
 | 
			
		||||
      "lstrip": false,
 | 
			
		||||
      "normalized": false,
 | 
			
		||||
      "rstrip": false,
 | 
			
		||||
      "single_word": false,
 | 
			
		||||
      "special": true
 | 
			
		||||
    },
 | 
			
		||||
    "151647": {
 | 
			
		||||
      "content": "<|object_ref_end|>",
 | 
			
		||||
      "lstrip": false,
 | 
			
		||||
      "normalized": false,
 | 
			
		||||
      "rstrip": false,
 | 
			
		||||
      "single_word": false,
 | 
			
		||||
      "special": true
 | 
			
		||||
    },
 | 
			
		||||
    "151648": {
 | 
			
		||||
      "content": "<|box_start|>",
 | 
			
		||||
      "lstrip": false,
 | 
			
		||||
      "normalized": false,
 | 
			
		||||
      "rstrip": false,
 | 
			
		||||
      "single_word": false,
 | 
			
		||||
      "special": true
 | 
			
		||||
    },
 | 
			
		||||
    "151649": {
 | 
			
		||||
      "content": "<|box_end|>",
 | 
			
		||||
      "lstrip": false,
 | 
			
		||||
      "normalized": false,
 | 
			
		||||
      "rstrip": false,
 | 
			
		||||
      "single_word": false,
 | 
			
		||||
      "special": true
 | 
			
		||||
    },
 | 
			
		||||
    "151650": {
 | 
			
		||||
      "content": "<|quad_start|>",
 | 
			
		||||
      "lstrip": false,
 | 
			
		||||
      "normalized": false,
 | 
			
		||||
      "rstrip": false,
 | 
			
		||||
      "single_word": false,
 | 
			
		||||
      "special": true
 | 
			
		||||
    },
 | 
			
		||||
    "151651": {
 | 
			
		||||
      "content": "<|quad_end|>",
 | 
			
		||||
      "lstrip": false,
 | 
			
		||||
      "normalized": false,
 | 
			
		||||
      "rstrip": false,
 | 
			
		||||
      "single_word": false,
 | 
			
		||||
      "special": true
 | 
			
		||||
    },
 | 
			
		||||
    "151652": {
 | 
			
		||||
      "content": "<|vision_start|>",
 | 
			
		||||
      "lstrip": false,
 | 
			
		||||
      "normalized": false,
 | 
			
		||||
      "rstrip": false,
 | 
			
		||||
      "single_word": false,
 | 
			
		||||
      "special": true
 | 
			
		||||
    },
 | 
			
		||||
    "151653": {
 | 
			
		||||
      "content": "<|vision_end|>",
 | 
			
		||||
      "lstrip": false,
 | 
			
		||||
      "normalized": false,
 | 
			
		||||
      "rstrip": false,
 | 
			
		||||
      "single_word": false,
 | 
			
		||||
      "special": true
 | 
			
		||||
    },
 | 
			
		||||
    "151654": {
 | 
			
		||||
      "content": "<|vision_pad|>",
 | 
			
		||||
      "lstrip": false,
 | 
			
		||||
      "normalized": false,
 | 
			
		||||
      "rstrip": false,
 | 
			
		||||
      "single_word": false,
 | 
			
		||||
      "special": true
 | 
			
		||||
    },
 | 
			
		||||
    "151655": {
 | 
			
		||||
      "content": "<|image_pad|>",
 | 
			
		||||
      "lstrip": false,
 | 
			
		||||
      "normalized": false,
 | 
			
		||||
      "rstrip": false,
 | 
			
		||||
      "single_word": false,
 | 
			
		||||
      "special": true
 | 
			
		||||
    },
 | 
			
		||||
    "151656": {
 | 
			
		||||
      "content": "<|video_pad|>",
 | 
			
		||||
      "lstrip": false,
 | 
			
		||||
      "normalized": false,
 | 
			
		||||
      "rstrip": false,
 | 
			
		||||
      "single_word": false,
 | 
			
		||||
      "special": true
 | 
			
		||||
    },
 | 
			
		||||
    "151657": {
 | 
			
		||||
      "content": "<tool_call>",
 | 
			
		||||
      "lstrip": false,
 | 
			
		||||
      "normalized": false,
 | 
			
		||||
      "rstrip": false,
 | 
			
		||||
      "single_word": false,
 | 
			
		||||
      "special": false
 | 
			
		||||
    },
 | 
			
		||||
    "151658": {
 | 
			
		||||
      "content": "</tool_call>",
 | 
			
		||||
      "lstrip": false,
 | 
			
		||||
      "normalized": false,
 | 
			
		||||
      "rstrip": false,
 | 
			
		||||
      "single_word": false,
 | 
			
		||||
      "special": false
 | 
			
		||||
    },
 | 
			
		||||
    "151659": {
 | 
			
		||||
      "content": "<|fim_prefix|>",
 | 
			
		||||
      "lstrip": false,
 | 
			
		||||
      "normalized": false,
 | 
			
		||||
      "rstrip": false,
 | 
			
		||||
      "single_word": false,
 | 
			
		||||
      "special": false
 | 
			
		||||
    },
 | 
			
		||||
    "151660": {
 | 
			
		||||
      "content": "<|fim_middle|>",
 | 
			
		||||
      "lstrip": false,
 | 
			
		||||
      "normalized": false,
 | 
			
		||||
      "rstrip": false,
 | 
			
		||||
      "single_word": false,
 | 
			
		||||
      "special": false
 | 
			
		||||
    },
 | 
			
		||||
    "151661": {
 | 
			
		||||
      "content": "<|fim_suffix|>",
 | 
			
		||||
      "lstrip": false,
 | 
			
		||||
      "normalized": false,
 | 
			
		||||
      "rstrip": false,
 | 
			
		||||
      "single_word": false,
 | 
			
		||||
      "special": false
 | 
			
		||||
    },
 | 
			
		||||
    "151662": {
 | 
			
		||||
      "content": "<|fim_pad|>",
 | 
			
		||||
      "lstrip": false,
 | 
			
		||||
      "normalized": false,
 | 
			
		||||
      "rstrip": false,
 | 
			
		||||
      "single_word": false,
 | 
			
		||||
      "special": false
 | 
			
		||||
    },
 | 
			
		||||
    "151663": {
 | 
			
		||||
      "content": "<|repo_name|>",
 | 
			
		||||
      "lstrip": false,
 | 
			
		||||
      "normalized": false,
 | 
			
		||||
      "rstrip": false,
 | 
			
		||||
      "single_word": false,
 | 
			
		||||
      "special": false
 | 
			
		||||
    },
 | 
			
		||||
    "151664": {
 | 
			
		||||
      "content": "<|file_sep|>",
 | 
			
		||||
      "lstrip": false,
 | 
			
		||||
      "normalized": false,
 | 
			
		||||
      "rstrip": false,
 | 
			
		||||
      "single_word": false,
 | 
			
		||||
      "special": false
 | 
			
		||||
    }
 | 
			
		||||
  },
 | 
			
		||||
  "additional_special_tokens": [
 | 
			
		||||
    "<|im_start|>",
 | 
			
		||||
    "<|im_end|>",
 | 
			
		||||
    "<|object_ref_start|>",
 | 
			
		||||
    "<|object_ref_end|>",
 | 
			
		||||
    "<|box_start|>",
 | 
			
		||||
    "<|box_end|>",
 | 
			
		||||
    "<|quad_start|>",
 | 
			
		||||
    "<|quad_end|>",
 | 
			
		||||
    "<|vision_start|>",
 | 
			
		||||
    "<|vision_end|>",
 | 
			
		||||
    "<|vision_pad|>",
 | 
			
		||||
    "<|image_pad|>",
 | 
			
		||||
    "<|video_pad|>"
 | 
			
		||||
  ],
 | 
			
		||||
  "bos_token": null,
 | 
			
		||||
  "chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}",
 | 
			
		||||
  "clean_up_tokenization_spaces": false,
 | 
			
		||||
  "eos_token": "<|im_end|>",
 | 
			
		||||
  "errors": "replace",
 | 
			
		||||
  "model_max_length": 131072,
 | 
			
		||||
  "pad_token": "<|endoftext|>",
 | 
			
		||||
  "split_special_tokens": false,
 | 
			
		||||
  "tokenizer_class": "Qwen2Tokenizer",
 | 
			
		||||
  "unk_token": null,
 | 
			
		||||
  "add_bos_token": false
 | 
			
		||||
}
 | 
			
		||||
										
											
												File diff suppressed because one or more lines are too long
											
										
									
								
							
		Loading…
	
		Reference in New Issue
	
	Block a user