Upload folder using ModelScope SDK

This commit is contained in:
Cherrytest 2025-04-28 10:11:52 +00:00
parent 3e997e7bff
commit ba16748358
14 changed files with 152332 additions and 37 deletions

4
.gitattributes vendored
View File

@ -44,4 +44,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
*.tar filter=lfs diff=lfs merge=lfs -text
*.wasm filter=lfs diff=lfs merge=lfs -text
*.zst filter=lfs diff=lfs merge=lfs -text
*tfevents* filter=lfs diff=lfs merge=lfs -text
*tfevents* filter=lfs diff=lfs merge=lfs -text
tokenizer.json filter=lfs diff=lfs merge=lfs -text

307
README.md
View File

@ -1,47 +1,282 @@
---
license: Apache License 2.0
# Qwen3-1.7B
#model-type:
##如 gpt、phi、llama、chatglm、baichuan 等
#- gpt
## Qwen3 Highlights
#domain:
##如 nlp、cv、audio、multi-modal
#- nlp
Qwen3 is the latest generation of large language models in Qwen series, offering a comprehensive suite of dense and mixture-of-experts (MoE) models. Built upon extensive training, Qwen3 delivers groundbreaking advancements in reasoning, instruction-following, agent capabilities, and multilingual support, with the following key features:
#language:
##语言代码列表 https://help.aliyun.com/document_detail/215387.html?spm=a2c4g.11186623.0.0.9f8d7467kni6Aa
#- cn
- **Uniquely support of seamless switching between thinking mode** (for complex logical reasoning, math, and coding) and **non-thinking mode** (for efficient, general-purpose dialogue) **within single model**, ensuring optimal performance across various scenarios.
- **Significantly enhancement in its reasoning capabilities**, surpassing previous QwQ (in thinking mode) and Qwen2.5 instruct models (in non-thinking mode) on mathematics, code generation, and commonsense logical reasoning.
- **Superior human preference alignment**, excelling in creative writing, role-playing, multi-turn dialogues, and instruction following, to deliver a more natural, engaging, and immersive conversational experience.
- **Expertise in agent capabilities**, enabling precise integration with external tools in both thinking and unthinking modes and achieving leading performance among open-source models in complex agent-based tasks.
- **Support of 100+ languages and dialects** with strong capabilities for **multilingual instruction following** and **translation**.
#metrics:
##如 CIDEr、Blue、ROUGE 等
#- CIDEr
## Model Overview
#tags:
##各种自定义,包括 pretrained、fine-tuned、instruction-tuned、RL-tuned 等训练方法和其他
#- pretrained
**Qwen3-1.7B** has the following features:
- Type: Causal Language Models
- Training Stage: Pretraining & Post-training
- Number of Parameters: 1.7B
- Number of Paramaters (Non-Embedding): 1.4B
- Number of Layers: 28
- Number of Attention Heads (GQA): 16 for Q and 8 for KV
- Context Length: 32,768
#tools:
##如 vllm、fastchat、llamacpp、AdaSeq 等
#- vllm
---
### 当前模型的贡献者未提供更加详细的模型介绍。模型文件和权重,可浏览“模型文件”页面获取。
#### 您可以通过如下git clone命令或者ModelScope SDK来下载模型
For more details, including benchmark evaluation, hardware requirements, and inference performance, please refer to our [blog](https://qwenlm.github.io/blog/qwen3/), [GitHub](https://github.com/QwenLM/Qwen3), and [Documentation](https://qwen.readthedocs.io/en/latest/).
SDK下载
```bash
#安装ModelScope
pip install modelscope
## Quickstart
The code of Qwen3 has been in the latest Hugging Face `transformers` and we advise you to use the latest version of `transformers`.
With `transformers<4.51.0`, you will encounter the following error:
```
KeyError: 'qwen3'
```
The following contains a code snippet illustrating how to use the model generate content based on given inputs.
```python
#SDK模型下载
from modelscope import snapshot_download
model_dir = snapshot_download('Qwen/Qwen3-1.7B')
```
Git下载
```
#Git模型下载
git clone https://www.modelscope.cn/Qwen/Qwen3-1.7B.git
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "Qwen/Qwen3-1.7B"
# load the tokenizer and the model
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
# prepare the model input
prompt = "Give me a short introduction to large language model."
messages = [
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
enable_thinking=True # Switches between thinking and non-thinking modes. Default is True.
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
# conduct text completion
generated_ids = model.generate(
**model_inputs,
max_new_tokens=32768
)
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
# parsing thinking content
try:
# rindex finding 151668 (</think>)
index = len(output_ids) - output_ids[::-1].index(151668)
except ValueError:
index = 0
thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n")
content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n")
print("thinking content:", thinking_content)
print("content:", content)
```
<p style="color: lightgrey;">如果您是本模型的贡献者,我们邀请您根据<a href="https://modelscope.cn/docs/ModelScope%E6%A8%A1%E5%9E%8B%E6%8E%A5%E5%85%A5%E6%B5%81%E7%A8%8B%E6%A6%82%E8%A7%88" style="color: lightgrey; text-decoration: underline;">模型贡献文档</a>,及时完善模型卡片内容。</p>
For deployment, you can use `vllm>=0.8.5` or `sglang>=0.4.5.post2` to create an OpenAI-compatible API endpoint:
- vLLM:
```shell
vllm serve Qwen/Qwen3-1.7B --enable-reasoning --reasoning-parser deepseek_r1
```
- SGLang:
```shell
python -m sglang.launch_server --model-path Qwen/Qwen3-1.7B --reasoning-parser deepseek-r1
```
## Switching Between Thinking and Non-Thinking Mode
> [!TIP]
> The `enable_thinking` switch is also available in APIs created by vLLM and SGLang.
> Please refer to [our documentation](https://qwen.readthedocs.io/) for more details.
### `enable_thinking=True`
By default, Qwen3 has thinking capabilities enabled, similar to QwQ-32B. This means the model will use its reasoning abilities to enhance the quality of generated responses. For example, when explicitly setting `enable_thinking=True` or leaving it as the default value in `tokenizer.apply_chat_template`, the model will engage its thinking mode.
```python
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
enable_thinking=True # True is the default value for enable_thinking
)
```
In this mode, the model will generate think content wrapped in a `<think>...</think>` block, followed by the final response.
> [!NOTE]
> For thinking mode, use `Temperature=0.6`, `TopP=0.95`, `TopK=20`, and `MinP=0` (the default setting in `generation_config.json`). **DO NOT use greedy decoding**, as it can lead to performance degradation and endless repetitions. For more detailed guidance, please refer to the [Best Practices](#best-practices) section.
### `enable_thinking=False`
We provide a hard switch to strictly disable the model's thinking behavior, aligning its functionality with the previous Qwen2.5-Instruct models. This mode is particularly useful in scenarios where disabling thinking is essential for enhancing efficiency.
```python
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
enable_thinking=False # Setting enable_thinking=False disables thinking mode
)
```
In this mode, the model will not generate any think content and will not include a `<think>...</think>` block.
> [!NOTE]
> For non-thinking mode, we suggest using `Temperature=0.7`, `TopP=0.8`, `TopK=20`, and `MinP=0`. For more detailed guidance, please refer to the [Best Practices](#best-practices) section.
### Advanced Usage: Switching Between Thinking and Non-Thinking Modes via User Input
We provide a soft switch mechanism that allows users to dynamically control the model's behavior when `enable_thinking=True`. Specifically, you can add `/think` and `/no_think` to user prompts or system messages to switch the model's thinking mode from turn to turn. The model will follow the most recent instruction in multi-turn conversations.
Here is an example of a multi-turn conversation:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
class QwenChatbot:
def __init__(self, model_name="Qwen/Qwen3-1.7B"):
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.model = AutoModelForCausalLM.from_pretrained(model_name)
self.history = []
def generate_response(self, user_input):
messages = self.history + [{"role": "user", "content": user_input}]
text = self.tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
inputs = self.tokenizer(text, return_tensors="pt")
response_ids = self.model.generate(**inputs, max_new_tokens=32768)[0][len(inputs.input_ids[0]):].tolist()
response = self.tokenizer.decode(response_ids, skip_special_tokens=True)
# Update history
self.history.append({"role": "user", "content": user_input})
self.history.append({"role": "assistant", "content": response})
return response
# Example Usage
if __name__ == "__main__":
chatbot = QwenChatbot()
# First input (without /think or /no_think tags, thinking mode is enabled by default)
user_input_1 = "How many r's in strawberries?"
print(f"User: {user_input_1}")
response_1 = chatbot.generate_response(user_input_1)
print(f"Bot: {response_1}")
print("----------------------")
# Second input with /no_think
user_input_2 = "Then, how many r's in blueberries? /no_think"
print(f"User: {user_input_2}")
response_2 = chatbot.generate_response(user_input_2)
print(f"Bot: {response_2}")
print("----------------------")
# Third input with /think
user_input_3 = "Really? /think"
print(f"User: {user_input_3}")
response_3 = chatbot.generate_response(user_input_3)
print(f"Bot: {response_3}")
```
> **Note**
> For API compatibility, when `enable_thinking=True`, regardless of whether the user uses `/think` or `/no_think`, the model will always output a block wrapped in `<think>...</think>`. However, the content inside this block may be empty if thinking is disabled.
> When `enable_thinking=False`, the soft switches are not valid. Regardless of any `/think` or `/no_think` tags input by the user, the model will not generate think content and will not include a `<think>...</think>` block.
## Agentic Use
Qwen3 excels in tool calling capabilities. We recommend using [Qwen-Agent](https://github.com/QwenLM/Qwen-Agent) to make the best use of agentic ability of Qwen3. Qwen-Agent encapsulates tool-calling templates and tool-calling parsers internally, greatly reducing coding complexity.
To define the available tools, you can use the MCP configuration file, use the integrated tool of Qwen-Agent, or integrate other tools by yourself.
```python
from qwen_agent.agents import Assistant
# Define LLM
llm_cfg = {
'model': 'Qwen3-1.7B',
# Use the endpoint provided by Alibaba Model Studio:
# 'model_type': 'qwen_dashscope',
# 'api_key': os.getenv('DASHSCOPE_API_KEY'),
# Use a custom endpoint compatible with OpenAI API:
'model_server': 'http://localhost:8000/v1', # api_base
'api_key': 'EMPTY',
# Other parameters:
# 'generate_cfg': {
# # Add: When the response content is `<think>this is the thought</think>this is the answer;
# # Do not add: When the response has been separated by reasoning_content and content.
# 'thought_in_content': True,
# },
}
# Define Tools
tools = [
{'mcpServers': { # You can specify the MCP configuration file
'time': {
'command': 'uvx',
'args': ['mcp-server-time', '--local-timezone=Asia/Shanghai']
},
"fetch": {
"command": "uvx",
"args": ["mcp-server-fetch"]
}
}
},
'code_interpreter', # Built-in tools
]
# Define Agent
bot = Assistant(llm=llm_cfg, function_list=tools)
# Streaming generation
messages = [{'role': 'user', 'content': 'https://qwenlm.github.io/blog/ Introduce the latest developments of Qwen'}]
for responses in bot.run(messages=messages):
pass
print(responses)
```
## Best Practices
To achieve optimal performance, we recommend the following settings:
1. **Sampling Parameters**:
- For thinking mode (`enable_thinking=True`), use `Temperature=0.6`, `TopP=0.95`, `TopK=20`, and `MinP=0`. **DO NOT use greedy decoding**, as it can lead to performance degradation and endless repetitions.
- For non-thinking mode (`enable_thinking=False`), we suggest using `Temperature=0.7`, `TopP=0.8`, `TopK=20`, and `MinP=0`.
- For supported frameworks, you can adjust the `presence_penalty` parameter between 0 and 2 to reduce endless repetitions. However, using a higher value may occasionally result in language mixing and a slight decrease in model performance.
2. **Adequate Output Length**: We recommend using an output length of 32,768 tokens for most queries. For benchmarking on highly complex problems, such as those found in math and programming competitions, we suggest setting the max output length to 38,912 tokens. This provides the model with sufficient space to generate detailed and comprehensive responses, thereby enhancing its overall performance.
3. **Standardize Output Format**: We recommend using prompts to standardize model outputs when benchmarking.
- **Math Problems**: Include "Please reason step by step, and put your final answer within \boxed{}." in the prompt.
- **Multiple-Choice Questions**: Add the following JSON structure to the prompt to standardize responses: "Please show your choice in the `answer` field with only the choice letter, e.g., `"answer": "C"`."
4. **No Thinking Content in History**: In multi-turn conversations, the historical model output should only include the final output part and does not need to include the thinking content. It is implemented in the provided chat template in Jinja2. However, for frameworks that do not directly use the Jinja2 chat template, it is up to the developers to ensure that the best practice is followed.
### Citation
If you find our work helpful, feel free to give us a cite.
```
@misc{qwen3,
title = {Qwen3},
url = {https://qwenlm.github.io/blog/qwen3/},
author = {Qwen Team},
month = {April},
year = {2025}
}
```

28
added_tokens.json Normal file
View File

@ -0,0 +1,28 @@
{
"</think>": 151668,
"</tool_call>": 151658,
"</tool_response>": 151666,
"<think>": 151667,
"<tool_call>": 151657,
"<tool_response>": 151665,
"<|box_end|>": 151649,
"<|box_start|>": 151648,
"<|endoftext|>": 151643,
"<|file_sep|>": 151664,
"<|fim_middle|>": 151660,
"<|fim_pad|>": 151662,
"<|fim_prefix|>": 151659,
"<|fim_suffix|>": 151661,
"<|im_end|>": 151645,
"<|im_start|>": 151644,
"<|image_pad|>": 151655,
"<|object_ref_end|>": 151647,
"<|object_ref_start|>": 151646,
"<|quad_end|>": 151651,
"<|quad_start|>": 151650,
"<|repo_name|>": 151663,
"<|video_pad|>": 151656,
"<|vision_end|>": 151653,
"<|vision_pad|>": 151654,
"<|vision_start|>": 151652
}

30
config.json Normal file
View File

@ -0,0 +1,30 @@
{
"architectures": [
"Qwen3ForCausalLM"
],
"attention_bias": false,
"attention_dropout": 0.0,
"bos_token_id": 151643,
"eos_token_id": 151645,
"head_dim": 128,
"hidden_act": "silu",
"hidden_size": 2048,
"initializer_range": 0.02,
"intermediate_size": 6144,
"max_position_embeddings": 40960,
"max_window_layers": 28,
"model_type": "qwen3",
"num_attention_heads": 16,
"num_hidden_layers": 28,
"num_key_value_heads": 8,
"rms_norm_eps": 1e-06,
"rope_scaling": null,
"rope_theta": 1000000,
"sliding_window": null,
"tie_word_embeddings": true,
"torch_dtype": "bfloat16",
"transformers_version": "4.51.0",
"use_cache": true,
"use_sliding_window": false,
"vocab_size": 151936
}

1
configuration.json Normal file
View File

@ -0,0 +1 @@
{"framework": "pytorch", "task": "text-generation", "allow_remote": true}

13
generation_config.json Normal file
View File

@ -0,0 +1,13 @@
{
"bos_token_id": 151643,
"do_sample": true,
"eos_token_id": [
151645,
151643
],
"pad_token_id": 151643,
"temperature": 0.6,
"top_k": 20,
"top_p": 0.95,
"transformers_version": "4.51.0"
}

151388
merges.txt Normal file

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:cd5ce26e5a72fdcc4c1021d9aa815d214b096b645b200106a5703268a6ec18bb
size 135

View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:2efdc0b09b975fe7e2d04b63544ec1d78206ee24eb65d8272b34900be1d27781
size 134

View File

@ -0,0 +1,318 @@
{
"metadata": {
"total_size": 4063479808
},
"weight_map": {
"lm_head.weight": "model-00002-of-00002.safetensors",
"model.embed_tokens.weight": "model-00001-of-00002.safetensors",
"model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.0.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.0.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.1.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.1.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.10.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
"model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.10.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
"model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.11.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
"model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.11.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
"model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.12.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
"model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.12.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
"model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.13.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
"model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.13.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
"model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.14.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
"model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.14.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
"model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.15.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
"model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.15.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
"model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.16.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
"model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.16.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
"model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.17.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
"model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.17.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
"model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.18.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
"model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.18.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
"model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.19.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
"model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.19.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
"model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.2.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.2.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.20.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
"model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.20.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
"model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.21.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.21.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.21.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
"model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.21.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
"model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.22.input_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.22.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.22.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.22.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.22.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.22.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
"model.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.22.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.22.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
"model.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.23.input_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.23.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.23.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.23.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.23.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.23.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
"model.layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.23.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.23.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
"model.layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.24.input_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.24.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.24.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.24.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.24.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.24.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
"model.layers.24.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.24.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.24.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
"model.layers.24.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.24.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.25.input_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.25.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.25.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.25.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.25.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.25.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
"model.layers.25.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.25.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.25.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
"model.layers.25.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.25.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.26.input_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.26.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.26.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.26.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.26.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.26.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
"model.layers.26.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.26.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.26.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
"model.layers.26.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.26.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.27.input_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.27.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.27.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.27.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.27.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.27.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
"model.layers.27.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.27.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.27.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
"model.layers.27.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.27.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.3.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.3.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.4.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.4.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.5.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.5.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.6.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.6.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.7.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.7.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.8.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.8.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.9.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.9.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
"model.norm.weight": "model-00001-of-00002.safetensors"
}
}

31
special_tokens_map.json Normal file
View File

@ -0,0 +1,31 @@
{
"additional_special_tokens": [
"<|im_start|>",
"<|im_end|>",
"<|object_ref_start|>",
"<|object_ref_end|>",
"<|box_start|>",
"<|box_end|>",
"<|quad_start|>",
"<|quad_end|>",
"<|vision_start|>",
"<|vision_end|>",
"<|vision_pad|>",
"<|image_pad|>",
"<|video_pad|>"
],
"eos_token": {
"content": "<|im_end|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
"pad_token": {
"content": "<|endoftext|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
}
}

BIN
tokenizer.json (Stored with Git LFS) Normal file

Binary file not shown.

239
tokenizer_config.json Normal file
View File

@ -0,0 +1,239 @@
{
"add_bos_token": false,
"add_prefix_space": false,
"added_tokens_decoder": {
"151643": {
"content": "<|endoftext|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151644": {
"content": "<|im_start|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151645": {
"content": "<|im_end|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151646": {
"content": "<|object_ref_start|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151647": {
"content": "<|object_ref_end|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151648": {
"content": "<|box_start|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151649": {
"content": "<|box_end|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151650": {
"content": "<|quad_start|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151651": {
"content": "<|quad_end|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151652": {
"content": "<|vision_start|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151653": {
"content": "<|vision_end|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151654": {
"content": "<|vision_pad|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151655": {
"content": "<|image_pad|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151656": {
"content": "<|video_pad|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151657": {
"content": "<tool_call>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": false
},
"151658": {
"content": "</tool_call>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": false
},
"151659": {
"content": "<|fim_prefix|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": false
},
"151660": {
"content": "<|fim_middle|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": false
},
"151661": {
"content": "<|fim_suffix|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": false
},
"151662": {
"content": "<|fim_pad|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": false
},
"151663": {
"content": "<|repo_name|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": false
},
"151664": {
"content": "<|file_sep|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": false
},
"151665": {
"content": "<tool_response>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": false
},
"151666": {
"content": "</tool_response>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": false
},
"151667": {
"content": "<think>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": false
},
"151668": {
"content": "</think>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": false
}
},
"additional_special_tokens": [
"<|im_start|>",
"<|im_end|>",
"<|object_ref_start|>",
"<|object_ref_end|>",
"<|box_start|>",
"<|box_end|>",
"<|quad_start|>",
"<|quad_end|>",
"<|vision_start|>",
"<|vision_end|>",
"<|vision_pad|>",
"<|image_pad|>",
"<|video_pad|>"
],
"bos_token": null,
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0].role == 'system' %}\n {{- messages[0].content + '\\n\\n' }}\n {%- endif %}\n {{- \"# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0].role == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0].content + '<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- set ns = namespace(multi_step_tool=true, last_query_index=messages|length - 1) %}\n{%- for message in messages[::-1] %}\n {%- set index = (messages|length - 1) - loop.index0 %}\n {%- if ns.multi_step_tool and message.role == \"user\" and not(message.content.startswith('<tool_response>') and message.content.endswith('</tool_response>')) %}\n {%- set ns.multi_step_tool = false %}\n {%- set ns.last_query_index = index %}\n {%- endif %}\n{%- endfor %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {%- set content = message.content %}\n {%- set reasoning_content = '' %}\n {%- if message.reasoning_content is defined and message.reasoning_content is not none %}\n {%- set reasoning_content = message.reasoning_content %}\n {%- else %}\n {%- if '</think>' in message.content %}\n {%- set content = message.content.split('</think>')[-1].lstrip('\\n') %}\n {%- set reasoning_content = message.content.split('</think>')[0].rstrip('\\n').split('<think>')[-1].lstrip('\\n') %}\n {%- endif %}\n {%- endif %}\n {%- if loop.index0 > ns.last_query_index %}\n {%- if loop.last or (not loop.last and reasoning_content) %}\n {{- '<|im_start|>' + message.role + '\\n<think>\\n' + reasoning_content.strip('\\n') + '\\n</think>\\n\\n' + content.lstrip('\\n') }}\n {%- else %}\n {{- '<|im_start|>' + message.role + '\\n' + content }}\n {%- endif %}\n {%- else %}\n {{- '<|im_start|>' + message.role + '\\n' + content }}\n {%- endif %}\n {%- if message.tool_calls %}\n {%- for tool_call in message.tool_calls %}\n {%- if (loop.first and content) or (not loop.first) %}\n {{- '\\n' }}\n {%- endif %}\n {%- if tool_call.function %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {%- if tool_call.arguments is string %}\n {{- tool_call.arguments }}\n {%- else %}\n {{- tool_call.arguments | tojson }}\n {%- endif %}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {%- endif %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if loop.first or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n {%- if enable_thinking is defined and enable_thinking is false %}\n {{- '<think>\\n\\n</think>\\n\\n' }}\n {%- endif %}\n{%- endif %}",
"clean_up_tokenization_spaces": false,
"eos_token": "<|im_end|>",
"errors": "replace",
"model_max_length": 131072,
"pad_token": "<|endoftext|>",
"split_special_tokens": false,
"tokenizer_class": "Qwen2Tokenizer",
"unk_token": null
}

1
vocab.json Normal file

File diff suppressed because one or more lines are too long