Update README.md

This commit is contained in:
An Yang 2025-04-29 08:52:30 +00:00 committed by system
parent ba1f828c09
commit 30b8421510
No known key found for this signature in database
GPG Key ID: 6A528E38E0733467

View File

@ -90,7 +90,7 @@ print("thinking content:", thinking_content)
print("content:", content) print("content:", content)
``` ```
For deployment, you can use `sglang>=0.4.6.post1` or `vllm>=0.8.4` or to create an OpenAI-compatible API endpoint: For deployment, you can use `sglang>=0.4.6.post1` or `vllm>=0.8.5` or to create an OpenAI-compatible API endpoint:
- SGLang: - SGLang:
```shell ```shell
python -m sglang.launch_server --model-path Qwen/Qwen3-32B --reasoning-parser qwen3 python -m sglang.launch_server --model-path Qwen/Qwen3-32B --reasoning-parser qwen3
@ -100,7 +100,7 @@ For deployment, you can use `sglang>=0.4.6.post1` or `vllm>=0.8.4` or to create
vllm serve Qwen/Qwen3-32B --enable-reasoning --reasoning-parser deepseek_r1 vllm serve Qwen/Qwen3-32B --enable-reasoning --reasoning-parser deepseek_r1
``` ```
For local use, applications such as llama.cpp, Ollama, LMStudio, and MLX-LM have also supported Qwen3. For local use, applications such as Ollama, LMStudio, MLX-LM, llama.cpp, and KTransformers have also supported Qwen3.
## Switching Between Thinking and Non-Thinking Mode ## Switching Between Thinking and Non-Thinking Mode
@ -274,7 +274,7 @@ YaRN is currently supported by several inference frameworks, e.g., `transformers
{ {
..., ...,
"rope_scaling": { "rope_scaling": {
"type": "yarn", "rope_type": "yarn",
"factor": 4.0, "factor": 4.0,
"original_max_position_embeddings": 32768 "original_max_position_embeddings": 32768
} }
@ -286,12 +286,12 @@ YaRN is currently supported by several inference frameworks, e.g., `transformers
For `vllm`, you can use For `vllm`, you can use
```shell ```shell
vllm serve ... --rope-scaling '{"type":"yarn","factor":4.0,"original_max_position_embeddings":32768}' --max-model-len 131072 vllm serve ... --rope-scaling '{"rope_type":"yarn","factor":4.0,"original_max_position_embeddings":32768}' --max-model-len 131072
``` ```
For `sglang`, you can use For `sglang`, you can use
```shell ```shell
python -m sglang.launch_server ... --json-model-override-args '{"rope_scaling":{"type":"yarn","factor":4.0,"original_max_position_embeddings":32768}}' python -m sglang.launch_server ... --json-model-override-args '{"rope_scaling":{"rope_type":"yarn","factor":4.0,"original_max_position_embeddings":32768}}'
``` ```
For `llama-server` from `llama.cpp`, you can use For `llama-server` from `llama.cpp`, you can use