Upload folder using ModelScope SDK

This commit is contained in:
Cherrytest 2025-08-20 16:47:52 +00:00
parent 250d85ddde
commit 16e5e3e3e0
26 changed files with 2723 additions and 41 deletions

4
.gitattributes vendored
View File

@ -44,4 +44,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
*.tar filter=lfs diff=lfs merge=lfs -text
*.wasm filter=lfs diff=lfs merge=lfs -text
*.zst filter=lfs diff=lfs merge=lfs -text
*tfevents* filter=lfs diff=lfs merge=lfs -text
*tfevents* filter=lfs diff=lfs merge=lfs -text
tokenizer.json filter=lfs diff=lfs merge=lfs -text

660
README.md
View File

@ -1,47 +1,627 @@
---
license: Apache License 2.0
#model-type:
##如 gpt、phi、llama、chatglm、baichuan 等
#- gpt
#domain:
##如 nlp、cv、audio、multi-modal
#- nlp
#language:
##语言代码列表 https://help.aliyun.com/document_detail/215387.html?spm=a2c4g.11186623.0.0.9f8d7467kni6Aa
#- cn
#metrics:
##如 CIDEr、Blue、ROUGE 等
#- CIDEr
#tags:
##各种自定义,包括 pretrained、fine-tuned、instruction-tuned、RL-tuned 等训练方法和其他
#- pretrained
#tools:
##如 vllm、fastchat、llamacpp、AdaSeq 等
#- vllm
license: apache-2.0
pipeline_tag: text-generation
library_name: transformers
tags:
- vllm
language:
- en
- zh
base_model:
- ByteDance-Seed/Seed-OSS-36B-Base
---
### 当前模型的贡献者未提供更加详细的模型介绍。模型文件和权重,可浏览“模型文件”页面获取。
#### 您可以通过如下git clone命令或者ModelScope SDK来下载模型
SDK下载
```bash
#安装ModelScope
pip install modelscope
<div align="center">
👋 Hi, everyone!
<br>
We are <b>ByteDance Seed Team.</b>
</div>
<p align="center">
You can get to know us better through the following channels👇
<br>
<a href="https://seed.bytedance.com/">
<img src="https://img.shields.io/badge/Website-%231e37ff?style=for-the-badge&logo=bytedance&logoColor=white"></a>
</p>
![seed logo](https://github.com/user-attachments/assets/c42e675e-497c-4508-8bb9-093ad4d1f216)
# Seed-OSS Open-Source Models
<p align="center">
<a href="https://github.com/ByteDance-Seed/seed-oss">
<img src="https://img.shields.io/badge/Seed-Project Page-yellow"></a>
<a href="https://github.com/ByteDance-Seed/seed-oss">
<img src="https://img.shields.io/badge/Seed-Tech Report Coming Soon-red"></a>
<a href="https://huggingface.co/ByteDance-Seed">
<img src="https://img.shields.io/badge/Seed-Hugging Face-orange"></a>
<br>
<a href="./LICENSE">
<img src="https://img.shields.io/badge/License-Apache2.0-blue"></a>
</p>
> [!NOTE]
> This model card is dedicated to the `Seed-OSS-36B-Instruct` model.
## News
- [2025/08/20]🔥We release `Seed-OSS-36B-Base` (both with and without synthetic data versions) and `Seed-OSS-36B-Instruct`.
## Introduction
Seed-OSS is a series of open-source large language models developed by ByteDance's Seed Team, designed for powerful long-context, reasoning, agent and general capabilities, and versatile developer-friendly features. Although trained with only 12T tokens, Seed-OSS achieves excellent performance on several popular open benchmarks.
We release this series of models to the open-source community under the Apache-2.0 license.
> [!NOTE]
> Seed-OSS is primarily optimized for international (i18n) use cases.
### Key Features
- **Flexible Control of Thinking Budget**: Allowing users to flexibly adjust the reasoning length as needed. This capability of dynamically controlling the reasoning length enhances inference efficiency in practical application scenarios.
- **Enhanced Reasoning Capability**: Specifically optimized for reasoning tasks while maintaining balanced and excellent general capabilities.
- **Agentic Intelligence**: Performs exceptionally well in agentic tasks such as tool-using and issue resolving.
- **Research-Friendly**: Given that the inclusion of synthetic instruction data in pre-training may affect the post-training research, we released pre-trained models both with and without instruction data, providing the research community with more diverse options.
- **Native Long Context**: Trained with up-to-512K long context natively.
### Model Summary
Seed-OSS adopts the popular causal language model architecture with RoPE, GQA attention, RMSNorm and SwiGLU activation.
<div align="center">
| | |
|:---:|:---:|
| | **Seed-OSS-36B** |
| **Parameters** | 36B |
| **Attention** | GQA |
| **Activation Function** | SwiGLU |
| **Number of Layers** | 64 |
| **Number of QKV Heads** | 80 / 8 / 8 |
| **Head Size** | 128 |
| **Hidden Size** | 5120 |
| **Vocabulary Size** | 155K |
| **Context Length** | 512K |
| **RoPE Base Frequency** | 1e7 |
</div>
## Evaluation Results
### Seed-OSS-36B-Base
Incorporating synthetic instruction data into pretraining leads to improved performance on most benchmarks. We adopt the version augmented with synthetic instruction data (i.e., *w/ syn.*) as `Seed-OSS-36B-Base`. We also release `Seed-OSS-36B-Base-woSyn` trained without such data (i.e., *w/o syn.*), offering the community a high-performance foundation model unaffected by synthetic instruction data.
<div align="center">
<table>
<thead>
<tr>
<th align="center">Benchmark</th>
<th align="center"><sup><a href="https://seed.bytedance.com/en/seed1_6">Seed1.6-Base</a></sup></th>
<th align="center"><sup>Qwen3-30B-A3B-Base-2507*</sup></th>
<th align="center"><sup>Qwen2.5-32B-Base*</sup></th>
<th align="center"><sup>Seed-OSS-36B-Base<br>(<i>w/ syn.</i>)</sup></th>
<th align="center"><sup>Seed-OSS-36B-Base-woSyn<br>(<i>w/o syn.</i>)</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td align="center" colspan=6><strong>Knowledge</strong></td>
</tr>
<tr>
<td align="center">MMLU-Pro</td>
<td align="center">70</td>
<td align="center">59.8</td>
<td align="center">58.5 (55.1)</td>
<td align="center"><b>65.1</b></td>
<td align="center">60.4</td>
</tr>
<tr>
<td align="center">MMLU</td>
<td align="center">88.8</td>
<td align="center">82.7</td>
<td align="center">84 (83.3)</td>
<td align="center"><b>84.9</b></td>
<td align="center">84.8</td>
</tr>
<tr>
<td align="center">TriviaQA</td>
<td align="center">91</td>
<td align="center">76.2</td>
<td align="center">76</td>
<td align="center"><b>82.1</b></td>
<td align="center">81.9</td>
</tr>
<tr>
<td align="center">GPQA-D</td>
<td align="center">43.4</td>
<td align="center"><b>37</b></td>
<td align="center">29.3</td>
<td align="center">31.7</td>
<td align="center">35.2</td>
</tr>
<tr>
<td align="center">SimpleQA</td>
<td align="center">17.1</td>
<td align="center">7.2</td>
<td align="center">6.1</td>
<td align="center">5.8</td>
<td align="center"><b>7.4</b></td>
</tr>
<tr>
<td align="center" colspan=6><strong>Reasoning</strong></td>
</tr>
<tr>
<td align="center">BBH</td>
<td align="center">92.1</td>
<td align="center">81.4</td>
<td align="center">79.1 (84.5)</td>
<td align="center"><b>87.7</b></td>
<td align="center">87.2</td>
</tr>
<tr>
<td align="center">AGIEval-en</td>
<td align="center">78</td>
<td align="center">66.4</td>
<td align="center">65.6</td>
<td align="center"><b>70.7</b></td>
<td align="center">70.1</td>
</tr>
<tr>
<td align="center" colspan=6><strong>Math</strong></td>
</tr>
<tr>
<td align="center">GSM8K</td>
<td align="center">93.1</td>
<td align="center">87</td>
<td align="center">87.5 (92.9)</td>
<td align="center"><b>90.8</b></td>
<td align="center">90.3</td>
</tr>
<tr>
<td align="center">MATH</td>
<td align="center">72.9</td>
<td align="center">61.1</td>
<td align="center">63.5 (57.7)</td>
<td align="center"><b>81.7</b></td>
<td align="center">61.3</td>
</tr>
<tr>
<td align="center" colspan=6><strong>Coding</strong></td>
</tr>
<tr>
<td align="center">MBPP</td>
<td align="center">83.6</td>
<td align="center">78.8</td>
<td align="center">77.8 (84.5)</td>
<td align="center"><b>80.6</b></td>
<td align="center">74.6</td>
</tr>
<tr>
<td align="center">HumanEval</td>
<td align="center">78</td>
<td align="center">70.7</td>
<td align="center">47.6 (58.5)</td>
<td align="center"><b>76.8</b></td>
<td align="center">75.6</td>
</tr>
</tbody>
</table>
</div>
<sup>
- <b>Bold</b> denotes open-source SOTA.
</sup><br/><sup>
- "*" indicates that the results in this column are presented in the format of "reproduced_results (reported_results_if_any)".
</sup>
### Seed-OSS-36B-Instruct
<div align="center">
<table>
<thead>
<tr>
<th align="center">Benchmark</th>
<th align="center"><sup><a href="https://console.volcengine.com/ark/region:ark+cn-beijing/model/detail?Id=doubao-seed-1-6-thinking">Seed1.6-Thinking-0715</a></sup></th>
<th align="center"><sup>OAI-OSS-20B*</sup></th>
<th align="center"><sup>Qwen3-30B-A3B-Thinking-2507*</sup></th>
<th align="center"><sup>Qwen3-32B*</sup></th>
<th align="center"><sup>Gemma3-27B</sup></th>
<th align="center"><sup>Seed-OSS-36B-Instruct</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td align="center" colspan=7><strong>Knowledge</strong></td>
</tr>
<tr>
<td align="center">MMLU-Pro</td>
<td align="center">86.6</td>
<td align="center">76.2</td>
<td align="center"><ins>81.9</ins> (80.9)</td>
<td align="center">81.8</td>
<td align="center">67.5</td>
<td align="center"><b>82.7</b></td>
</tr>
<tr>
<td align="center">MMLU</td>
<td align="center">90.6</td>
<td align="center">81.7 (85.3)</td>
<td align="center"><ins>86.9</ins></td>
<td align="center">86.2</td>
<td align="center">76.9</td>
<td align="center"><b>87.4</b></td>
</tr>
<tr>
<td align="center">GPQA-D</td>
<td align="center">80.7</td>
<td align="center"><b>72.2</b> (71.5)</td>
<td align="center"><ins>71.4</ins> (73.4)</td>
<td align="center">66.7 (68.4)</td>
<td align="center">42.4</td>
<td align="center"><ins>71.4</ins></td>
</tr>
<tr>
<td align="center">SuperGPQA</td>
<td align="center">63.4</td>
<td align="center">50.1</td>
<td align="center"><b>57.3</b> (56.8)</td>
<td align="center">49.3</td>
<td align="center">-</td>
<td align="center"><ins>55.7</ins></td>
</tr>
<tr>
<td align="center">SimpleQA</td>
<td align="center">23.7</td>
<td align="center">6.7</td>
<td align="center"><b>23.6</b></td>
<td align="center">8.6</td>
<td align="center"><ins>10</ins></td>
<td align="center">9.7</td>
</tr>
<tr>
<td align="center" colspan=7><strong>Math</strong></td>
</tr>
<tr>
<td align="center">AIME24</td>
<td align="center">90.3</td>
<td align="center"><b>92.7</b> (92.1)</td>
<td align="center">87.7</td>
<td align="center">82.7 (81.4)</td>
<td align="center">-</td>
<td align="center"><ins>91.7</ins></td>
</tr>
<tr>
<td align="center">AIME25</td>
<td align="center">86</td>
<td align="center"><b>90.3</b> (91.7)</td>
<td align="center">81.3 (85)</td>
<td align="center">73.3 (72.9)</td>
<td align="center">-</td>
<td align="center"><ins>84.7</ins></td>
</tr>
<tr>
<td align="center">BeyondAIME</td>
<td align="center">60</td>
<td align="center"><b>69</b></td>
<td align="center">56</td>
<td align="center">29</td>
<td align="center">-</td>
<td align="center"><ins>65</ins></td>
</tr>
<tr>
<td align="center" colspan=7><strong>Reasoning</strong></td>
</tr>
<tr>
<td align="center">ArcAGI V2</td>
<td align="center">50.3</td>
<td align="center"><b>41.7</b></td>
<td align="center">37.8</td>
<td align="center">14.4</td>
<td align="center">-</td>
<td align="center"><ins>40.6</ins></td>
</tr>
<tr>
<td align="center">KORBench</td>
<td align="center">74.8</td>
<td align="center"><b>72.3</b></td>
<td align="center">70.2</td>
<td align="center">65.4</td>
<td align="center">-</td>
<td align="center"><ins>70.6</ins></td>
</tr>
<tr>
<td align="center" colspan=7><strong>Coding</strong></td>
</tr>
<tr>
<td align="center">LiveCodeBench v6<br/><sup>(02/2025-05/2025)</sup></td>
<td align="center">66.8</td>
<td align="center"><ins>63.8</ins></td>
<td align="center">60.3 (66)</td>
<td align="center">53.4</td>
<td align="center">-</td>
<td align="center"><b>67.4</b></td>
</tr>
<tr>
<td align="center">HLE</td>
<td align="center">13.9</td>
<td align="center"><b>12.7</b> (10.9)</td>
<td align="center">8.7</td>
<td align="center">6.9</td>
<td align="center">-</td>
<td align="center"><ins>10.1</ins></td>
</tr>
<tr>
<td align="center" colspan=7><strong>Instruction Following</strong></td>
</tr>
<tr>
<td align="center">IFEval</td>
<td align="center">86.3</td>
<td align="center"><b>92.8</b></td>
<td align="center">88 (88.9)</td>
<td align="center">88.4 (85)</td>
<td align="center"><ins>90.4</ins></td>
<td align="center">85.8</td>
</tr>
<tr>
<td align="center" colspan=7><strong>Agent</strong></td>
</tr>
<tr>
<td align="center">TAU1-Retail</td>
<td align="center">63</td>
<td align="center">(54.8)</td>
<td align="center"><ins>58.7</ins> (67.8)</td>
<td align="center">40.9</td>
<td align="center">-</td>
<td align="center"><b>70.4</b></td>
</tr>
<tr>
<td align="center">TAU1-Airline</td>
<td align="center">49</td>
<td align="center">(38)</td>
<td align="center"><b>47</b> (48)</td>
<td align="center">38</td>
<td align="center">-</td>
<td align="center"><ins>46</ins></td>
</tr>
<tr>
<td align="center">SWE-Bench Verified<br/><sup>(OpenHands)</sup></td>
<td align="center">41.8</td>
<td align="center"><b>(60.7)</b></td>
<td align="center">31</td>
<td align="center">23.4</td>
<td align="center">-</td>
<td align="center"><ins>56</ins></td>
</tr>
<tr>
<td align="center">SWE-Bench Verified<br/><sup>(AgentLess 4*10)</sup></td>
<td align="center">48.4</td>
<td align="center">-</td>
<td align="center">33.5</td>
<td align="center"><ins>39.7</ins></td>
<td align="center">-</td>
<td align="center"><b>47</b></td>
</tr>
<tr>
<td align="center">Multi-SWE-Bench</td>
<td align="center">17.7</td>
<td align="center">-</td>
<td align="center"><ins>9.5</ins></td>
<td align="center">7.7</td>
<td align="center">-</td>
<td align="center"><b>17</b></td>
</tr>
<tr>
<td align="center" colspan=7><strong>Multilingualism</strong></td>
</tr>
<tr>
<td align="center">MMMLU</td>
<td align="center">84.3</td>
<td align="center">77.4 (75.7)</td>
<td align="center"><b>79</b></td>
<td align="center"><b>79</b> (80.6)</td>
<td align="center">-</td>
<td align="center"><ins>78.4</ins></td>
</tr>
<tr>
<td align="center" colspan=7><strong>Long Context</strong></td>
</tr>
<tr>
<td align="center">RULER<br/><sup>(128K)</sup></td>
<td align="center">94.5</td>
<td align="center">78.7</td>
<td align="center"><ins>94.5</ins></td>
<td align="center">77.5</td>
<td align="center">-</td>
<td align="center"><b>94.6</b></td>
</tr>
<tr>
<td align="center" colspan=7><strong>Safety</strong></td>
</tr>
<tr>
<td align="center">AIR-Bench</td>
<td align="center">-</td>
<td align="center">-</td>
<td align="center">-</td>
<td align="center">-</td>
<td align="center">-</td>
<td align="center">75.6</td>
</tr>
</tbody>
</table>
</div>
<sup>
- <b>Bold</b> denotes open-source SOTA. <ins>Underlined</ins> indicates the second place in the open-source model.
</sup><br/><sup>
- "*" indicates that the results in this column are presented in the format of "reproduced_results (reported_results_if_any)". Some results have been omitted due to the failure of the evaluation run.
</sup><br/><sup>
- The results of Gemma3-27B are sourced directly from its technical report.
</sup><br/><sup>
- Generation configs for Seed-OSS-36B-Instruct: temperature=1.1, top_p=0.95. Specifically, for Taubench, temperature=1, top_p=0.7.
</sup><br/><sup>
</sup>
> [!NOTE]
> We recommend sampling with `temperature=1.1` and `top_p=0.95`.
### Thinking Budget
Users can flexibly specify the model's thinking budget. The figure below shows the performance curves across different tasks as the thinking budget varies. For simpler tasks (such as IFEval), the model's chain of thought (CoT) is shorter, and the score exhibits fluctuations as the thinking budget increases. For more challenging tasks (such as AIME and LiveCodeBench), the model's CoT is longer, and the score improves with an increase in the thinking budget.
![thinking_budget](./thinking_budget.png)
Here is an example with a thinking budget set to 512: during the reasoning process, the model periodically triggers self-reflection to estimate the consumed and remaining budget, and delivers the final response once the budget is exhausted or the reasoning concludes.
```
<seed:think>
Got it, let's try to solve this problem step by step. The problem says ... ...
<seed:cot_budget_reflect>I have used 129 tokens, and there are 383 tokens remaining for use.</seed:cot_budget_reflect>
Using the power rule, ... ...
<seed:cot_budget_reflect>I have used 258 tokens, and there are 254 tokens remaining for use.</seed:cot_budget_reflect>
Alternatively, remember that ... ...
<seed:cot_budget_reflect>I have used 393 tokens, and there are 119 tokens remaining for use.</seed:cot_budget_reflect>
Because if ... ...
<seed:cot_budget_reflect>I have exhausted my token budget, and now I will start answering the question.</seed:cot_budget_reflect>
</seed:think>
To solve the problem, we start by using the properties of logarithms to simplify the given equations: (full answer omitted).
```
If no thinking budget is set (default mode), Seed-OSS will initiate thinking with unlimited length. If a thinking budget is specified, users are advised to prioritize values that are integer multiples of 512 (e.g., 512, 1K, 2K, 4K, 8K, or 16K), as the model has been extensively trained on these intervals. Models are instructed to output a direct response when the thinking budget is 0, and we recommend setting any budget below 512 to this value.
## Quick Start
```shell
pip3 install -r requirements.txt
pip install git+ssh://git@github.com/Fazziekey/transformers.git@seed-oss
```
```python
#SDK模型下载
from modelscope import snapshot_download
model_dir = snapshot_download('ByteDance-Seed/Seed-OSS-36B-Instruct')
```
Git下载
```
#Git模型下载
git clone https://www.modelscope.cn/ByteDance-Seed/Seed-OSS-36B-Instruct.git
from transformers import AutoModelForCausalLM, AutoTokenizer
import os
import re
model_name_or_path = "ByteDance-Seed/Seed-OSS-36B-Instruct"
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, device_map="auto") # You may want to use bfloat16 and/or move to GPU here
messages = [
{"role": "user", "content": "How to make pasta?"},
]
tokenized_chat = tokenizer.apply_chat_template(
messages,
tokenize=True,
add_generation_prompt=True,
return_tensors="pt",
thinking_budget=512 # control the thinking budget
)
outputs = model.generate(tokenized_chat.to(model.device), max_new_tokens=2048)
output_text = tokenizer.decode(outputs[0])
```
<p style="color: lightgrey;">如果您是本模型的贡献者,我们邀请您根据<a href="https://modelscope.cn/docs/ModelScope%E6%A8%A1%E5%9E%8B%E6%8E%A5%E5%85%A5%E6%B5%81%E7%A8%8B%E6%A6%82%E8%A7%88" style="color: lightgrey; text-decoration: underline;">模型贡献文档</a>,及时完善模型卡片内容。</p>
## Inference
### Download Model
Download Seed-OSS checkpoint to `./Seed-OSS-36B-Instruct`
### Transformers
The `generate.py` script provides a simple interface for model inference with configurable options.
#### Basic Usage
```shell
cd inference
python3 generate.py --model_path /path/to/model
```
#### Key Parameters
| Parameter | Description |
|-----------|-------------|
| `--model_path` | Path to the pretrained model directory (required) |
| `--prompts` | Input prompts (default: sample cooking/code questions) |
| `--max_new_tokens` | Maximum tokens to generate (default: 4096) |
| `--attn_implementation` | Attention mechanism: `flash_attention_2` (default) or `eager` |
| `--load_in_4bit/8bit` | Enable 4-bit/8-bit quantization (reduces memory usage) |
| `--thinking_budget` | Thinking budget in tokens (default: -1 for unlimited budget) |
#### Quantization Examples
```shell
# 8-bit quantization
python3 generate.py --model_path /path/to/model --load_in_8bit True
# 4-bit quantization
python3 generate.py --model_path /path/to/model --load_in_4bit True
```
#### Custom Prompts
```shell
python3 generate.py --model_path /path/to/model --prompts "['What is machine learning?', 'Explain quantum computing']"
```
### vLLM
Use vllm >= 0.10.0 or higher for inference.
- First install vLLM with Seed-OSS support version:
```shell
VLLM_USE_PRECOMPILED=1 VLLM_TEST_USE_PRECOMPILED_NIGHTLY_WHEEL=1 pip install git+ssh://git@github.com/FoolPlayer/vllm.git@seed-oss
```
- Start vLLM API server:
```shell
python3 -m vllm.entrypoints.openai.api_server \
--host localhost \
--port 4321 \
--enable-auto-tool-choice \
--tool-call-parser seed_oss \
--trust-remote-code \
--model ./Seed-OSS-36B-Instruct \
--chat-template ./Seed-OSS-36B-Instruct/chat_template.jinja \
--tensor-parallel-size 8 \
--dtype bfloat16 \
--served-model-name seed_oss
```
- Test with OpenAI client:
Chat
```shell
python3 inference/vllm_chat.py
```
Tool Call
```shell
python3 inference/vllm_tool_call.py
```
## Model Card
See [MODEL_CARD](./MODEL_CARD.md).
## License
This project is licensed under Apache-2.0. See the [LICENSE](./LICENSE) flie for details.
## Citation
```bibtex
@misc{seed2025seed-oss,
author={ByteDance Seed Team},
title={Seed-OSS Open-Source Models},
year={2025},
howpublished={\url{https://github.com/ByteDance-Seed/seed-oss}}
}
```
## About [ByteDance Seed Team](https://seed.bytedance.com/)
Founded in 2023, ByteDance Seed Team is dedicated to crafting the industry's most advanced AI foundation models. The team aspires to become a world-class research team and make significant contributions to the advancement of science and society.

171
chat_template.jinja Normal file
View File

@ -0,0 +1,171 @@
{# ---------- special token variables ---------- #}
{%- set bos_token = '<seed:bos>' -%}
{%- set eos_token = '<seed:eos>' -%}
{%- set pad_token = '<seed:pad>' -%}
{%- set toolcall_begin_token = '<seed:tool_call>' -%}
{%- set toolcall_end_token = '</seed:tool_call>' -%}
{%- set think_begin_token = '<seed:think>' -%}
{%- set think_end_token = '</seed:think>' -%}
{%- set budget_begin_token = '<seed:cot_budget_reflect>'-%}
{%- set budget_end_token = '</seed:cot_budget_reflect>'-%}
{# -------------- reflection-interval lookup -------------- #}
{%- if not thinking_budget is defined %}
{%- set thinking_budget = -1 -%}
{%- endif -%}
{%- set budget_reflections_v05 = {
0: 0,
512: 128,
1024: 256,
2048: 512,
4096: 512,
8192: 1024,
16384: 1024
} -%}
{# 找到 “大于等于 thinking_budget” 的第一个档位 #}
{%- set ns = namespace(interval = None) -%}
{%- for k, v in budget_reflections_v05 | dictsort -%}
{%- if ns.interval is none and thinking_budget <= k -%}
{%- set ns.interval = v -%}
{%- endif -%}
{%- endfor -%}
{# 若超过最大档位,则用最后一个档位的值 #}
{%- if ns.interval is none -%}
{%- set ns.interval = budget_reflections_v05[16384] -%}
{%- endif -%}
{# ---------- 预处理 system 消息 ---------- #}
{%- if messages[0]["role"] == "system" %}
{%- set system_message = messages[0]["content"] %}
{%- set loop_messages = messages[1:] %}
{%- else %}
{%- set loop_messages = messages %}
{%- endif %}
{# ---------- 确保 tools 存在 ---------- #}
{%- if not tools is defined or tools is none %}
{%- set tools = [] %}
{%- endif %}
{# tools2doc.jinja #}
{%- macro py_type(t) -%}
{%- if t == "string" -%}str
{%- elif t in ("number", "integer") -%}int
{%- elif t == "boolean" -%}bool
{%- elif t == "array" -%}list
{%- else -%}Any{%- endif -%}
{%- endmacro -%}
{# ---------- 输出 system 块 ---------- #}
{%- if system_message is defined %}
{{ bos_token + "system\n" + system_message }}
{%- else %}
{%- if tools is iterable and tools | length > 0 %}
{{ bos_token + "system\nYou are Doubao, a helpful AI assistant. You may call one or more functions to assist with the user query." }}
{%- endif %}
{%- endif %}
{%- if use_json_tooldef is defined and use_json_tooldef %}
{{"Tool List:\nYou are authorized to use the following tools (described in JSON Schema format). Before performing any task, you must decide how to call them based on the descriptions and parameters of these tools."}}
{{ tools | tojson(ensure_ascii=False) }}
{%- else %}
{%- for item in tools if item.type == "function" %}
Function:
def {{ item.function.name }}(
{%- for name, spec in item.function.parameters.properties.items() %}
{{- name }}: {{ py_type(spec.type) }}{% if not loop.last %},{% endif %}
{%- endfor %}):
"""
{{ item.function.description | trim }}
{# ---------- Args ---------- #}
{%- if item.function.parameters.properties %}
Args:
{%- for name, spec in item.function.parameters.properties.items() %}
- {{ name }} ({{ py_type(spec.type) }})
{%- if name in item.function.parameters.required %} [必填]{% else %} [选填]{% endif %}:
{{- " " ~ (spec.description or "") }}
{%- endfor %}
{%- endif %}
{# ---------- Returns ---------- #}
{%- if item.function.returns is defined
and item.function.returns.properties is defined
and item.function.returns.properties %}
Returns:
{%- for name, spec in item.function.returns.properties.items() %}
- {{ name }} ({{ py_type(spec.type) }}):
{{- " " ~ (spec.description or "") }}
{%- endfor %}
{%- endif %}
"""
{%- endfor %}
{%- endif %}
{%- if tools is iterable and tools | length > 0 %}
{{"工具调用请遵循如下格式:\n<seed:tool_call>\n<function=example_function_name>\n<parameter=example_parameter_1>value_1</parameter>\n<parameter=example_parameter_2>This is the value for the second parameter\nthat can span\nmultiple lines</parameter>\n</function>\n</seed:tool_call>\n"}}
{%- endif %}
{# 结束 system 块行尾 #}
{%- if system_message is defined or tools is iterable and tools | length > 0 %}
{{ eos_token }}
{%- endif %}
{# ---------- Thinking Budget ---------- #}
{%- if thinking_budget is defined %}
{%- if thinking_budget == 0 %}
{{ bos_token+"system" }}
{{ "You are an intelligent assistant that can answer questions in one step without the need for reasoning and thinking, that is, your thinking budget is 0. Next, please skip the thinking process and directly start answering the user's questions." }}
{{ eos_token }}
{%- elif not thinking_budget == -1 %}
{{ bos_token+"system" }}
{{ "You are an intelligent assistant with reflective ability. In the process of thinking and reasoning, you need to strictly follow the thinking budget, which is "}}{{thinking_budget}}{{". That is, you need to complete your thinking within "}}{{thinking_budget}}{{" tokens and start answering the user's questions. You will reflect on your thinking process every "}}{{ns.interval}}{{" tokens, stating how many tokens have been used and how many are left."}}
{{ eos_token }}
{%- endif %}
{%- endif %}
{# ---------- 逐条写出历史消息 ---------- #}
{%- for message in loop_messages %}
{%- if message.role == "assistant"
and message.tool_calls is defined
and message.tool_calls is iterable
and message.tool_calls | length > 0 %}
{{ bos_token + message.role }}
{%- if message.reasoning_content is defined and message.reasoning_content is string and message.reasoning_content | trim | length > 0 %}
{{ "\n" + think_begin_token + message.reasoning_content | trim + think_end_token }}
{%- endif %}
{%- if message.content is defined and message.content is string and message.content | trim | length > 0 %}
{{ "\n" + message.content | trim + "\n" }}
{%- endif %}
{%- for tool_call in message.tool_calls %}
{%- if tool_call.function is defined %}{% set tool_call = tool_call.function %}{% endif %}
{{ "\n" + toolcall_begin_token + "\n<function=" + tool_call.name + ">\n" }}
{%- if tool_call.arguments is defined %}
{%- for arg_name, arg_value in tool_call.arguments | items %}
{{ "<parameter=" + arg_name + ">" }}
{%- set arg_value = arg_value if arg_value is string else arg_value | string %}
{{ arg_value+"</parameter>\n" }}
{%- endfor %}
{%- endif %}
{{ "</function>\n" + toolcall_end_token }}
{%- endfor %}
{{ eos_token }}
{%- elif message.role in ["user", "system"] %}
{{ bos_token + message.role + "\n" + message.content + eos_token }}
{%- elif message.role == "assistant" %}
{{ bos_token + message.role }}
{%- if message.reasoning_content is defined and message.reasoning_content is string and message.reasoning_content | trim | length > 0 %}
{{ "\n" + think_begin_token + message.reasoning_content | trim + think_end_token }}
{%- endif %}
{%- if message.content is defined and message.content is string and message.content | trim | length > 0 %}
{{ "\n" + message.content | trim + eos_token }}
{%- endif %}
{# 包括 tool 角色,在这个逻辑 #}
{%- else %}
{{ bos_token + message.role + "\n" + message.content + eos_token }}
{%- endif %}
{%- endfor %}
{# ---------- 控制模型开始续写 ---------- #}
{%- if add_generation_prompt %}
{{ bos_token+"assistant\n" }}
{%- if thinking_budget == 0 %}
{{ think_begin_token+budget_begin_token }}
{%- endif %}
{%- endif %}

33
config.json Normal file
View File

@ -0,0 +1,33 @@
{
"architectures": [
"SeedOssForCausalLM"
],
"attention_bias": true,
"attention_dropout": 0.1,
"attention_out_bias": false,
"bos_token_id": 0,
"pad_token_id": 1,
"eos_token_id": 2,
"head_dim": 128,
"hidden_act": "silu",
"hidden_size": 5120,
"initializer_range": 0.02,
"intermediate_size": 27648,
"max_position_embeddings": 524288,
"mlp_bias": false,
"model_type": "seed_oss",
"num_attention_heads": 80,
"num_hidden_layers": 64,
"num_key_value_heads": 8,
"residual_dropout": 0.1,
"rms_norm_eps": 1e-06,
"rope_scaling": {
"rope_type": "default"
},
"rope_theta": 10000000.0,
"tie_word_embeddings": false,
"torch_dtype": "bfloat16",
"transformers_version": "4.55.0",
"use_cache": true,
"vocab_size": 155136
}

1
configuration.json Normal file
View File

@ -0,0 +1 @@
{"framework": "pytorch", "task": "text-generation", "allow_remote": true}

10
generation_config.json Normal file
View File

@ -0,0 +1,10 @@
{
"_from_model_config": true,
"bos_token_id": 0,
"pad_token_id": 1,
"eos_token_id": 2,
"transformers_version": "4.55.0",
"temperature": 1.1,
"top_p": 0.95
}

View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:a6387b80f12db915254cbe82c26d393f0f5a10600ce7bda028e3ee90c256eecc
size 135

View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:fe2d0b95a5d785f8e2a18329296773e042b8caa9a3f0a1d9e8ef2c9bb4a14eea
size 135

View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:1a3e358505119541fa85625546348a60f39685fba7549bd94c8e982d407a0555
size 135

View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:0d6bbfb4ab754f2cb391caa40f67dd9d349b5381b402574a0440813606a348c5
size 135

View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:107cce88b60faf9bad30769172dce01cd1764570f92cb0a80dece2e238167f23
size 135

View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:e71fa75e94020a23d9a15da86ed328bdc01462a0a3f09ecdd614f047a802301a
size 135

View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:a04d657585986417b4957ae284b889c2b58083e39a90994a068ea4a25cfa27ae
size 135

View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:1ef369c73695b6d4ea90e68154005d90a2733f67053b10211830a8d85e9263c4
size 135

View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:63e354190fef1698af8cf2b2b6eb3ceb4627be4e15c886fcefae04c40046811e
size 135

View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:a4781bad8d0e3bee0f1adda8017b951edd34a57638420cadaabf433e6bde8d0c
size 135

View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:223165c90a98f80f66a5f2dcb94e6f09e3454974473fe14c6822c0628ee55f56
size 135

View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:8db709a2c461316819593bef8ae9e252cdf5da323f4361be62dd7f4d3c4c8f18
size 135

View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:4e6c7c009da0d562231304d6eef141a64f95a73e37b4d2576aa587a82b5713ec
size 135

View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:6d233a72fe9dc4cbea98e275729541d9ebf06a7d0ecf4edd68e0f86d8b021339
size 135

View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:edabb4aa838885534911083fa9d7c00468f9e43103eb1bf61dc4a033af42d1c8
size 135

View File

@ -0,0 +1,779 @@
{
"metadata": {
"total_parameters": 36151104512,
"total_size": 72302209024
},
"weight_map": {
"lm_head.weight": "model-00015-of-00015.safetensors",
"model.embed_tokens.weight": "model-00001-of-00015.safetensors",
"model.layers.0.input_layernorm.weight": "model-00001-of-00015.safetensors",
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00015.safetensors",
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00015.safetensors",
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00015.safetensors",
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00015.safetensors",
"model.layers.0.self_attn.k_proj.bias": "model-00001-of-00015.safetensors",
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00015.safetensors",
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00015.safetensors",
"model.layers.0.self_attn.q_proj.bias": "model-00001-of-00015.safetensors",
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00015.safetensors",
"model.layers.0.self_attn.v_proj.bias": "model-00001-of-00015.safetensors",
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00015.safetensors",
"model.layers.1.input_layernorm.weight": "model-00001-of-00015.safetensors",
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00015.safetensors",
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00015.safetensors",
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00015.safetensors",
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00015.safetensors",
"model.layers.1.self_attn.k_proj.bias": "model-00001-of-00015.safetensors",
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00015.safetensors",
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00015.safetensors",
"model.layers.1.self_attn.q_proj.bias": "model-00001-of-00015.safetensors",
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00015.safetensors",
"model.layers.1.self_attn.v_proj.bias": "model-00001-of-00015.safetensors",
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00015.safetensors",
"model.layers.10.input_layernorm.weight": "model-00003-of-00015.safetensors",
"model.layers.10.mlp.down_proj.weight": "model-00003-of-00015.safetensors",
"model.layers.10.mlp.gate_proj.weight": "model-00003-of-00015.safetensors",
"model.layers.10.mlp.up_proj.weight": "model-00003-of-00015.safetensors",
"model.layers.10.post_attention_layernorm.weight": "model-00003-of-00015.safetensors",
"model.layers.10.self_attn.k_proj.bias": "model-00003-of-00015.safetensors",
"model.layers.10.self_attn.k_proj.weight": "model-00003-of-00015.safetensors",
"model.layers.10.self_attn.o_proj.weight": "model-00003-of-00015.safetensors",
"model.layers.10.self_attn.q_proj.bias": "model-00003-of-00015.safetensors",
"model.layers.10.self_attn.q_proj.weight": "model-00003-of-00015.safetensors",
"model.layers.10.self_attn.v_proj.bias": "model-00003-of-00015.safetensors",
"model.layers.10.self_attn.v_proj.weight": "model-00003-of-00015.safetensors",
"model.layers.11.input_layernorm.weight": "model-00003-of-00015.safetensors",
"model.layers.11.mlp.down_proj.weight": "model-00003-of-00015.safetensors",
"model.layers.11.mlp.gate_proj.weight": "model-00003-of-00015.safetensors",
"model.layers.11.mlp.up_proj.weight": "model-00003-of-00015.safetensors",
"model.layers.11.post_attention_layernorm.weight": "model-00003-of-00015.safetensors",
"model.layers.11.self_attn.k_proj.bias": "model-00003-of-00015.safetensors",
"model.layers.11.self_attn.k_proj.weight": "model-00003-of-00015.safetensors",
"model.layers.11.self_attn.o_proj.weight": "model-00003-of-00015.safetensors",
"model.layers.11.self_attn.q_proj.bias": "model-00003-of-00015.safetensors",
"model.layers.11.self_attn.q_proj.weight": "model-00003-of-00015.safetensors",
"model.layers.11.self_attn.v_proj.bias": "model-00003-of-00015.safetensors",
"model.layers.11.self_attn.v_proj.weight": "model-00003-of-00015.safetensors",
"model.layers.12.input_layernorm.weight": "model-00004-of-00015.safetensors",
"model.layers.12.mlp.down_proj.weight": "model-00004-of-00015.safetensors",
"model.layers.12.mlp.gate_proj.weight": "model-00004-of-00015.safetensors",
"model.layers.12.mlp.up_proj.weight": "model-00004-of-00015.safetensors",
"model.layers.12.post_attention_layernorm.weight": "model-00004-of-00015.safetensors",
"model.layers.12.self_attn.k_proj.bias": "model-00003-of-00015.safetensors",
"model.layers.12.self_attn.k_proj.weight": "model-00003-of-00015.safetensors",
"model.layers.12.self_attn.o_proj.weight": "model-00003-of-00015.safetensors",
"model.layers.12.self_attn.q_proj.bias": "model-00003-of-00015.safetensors",
"model.layers.12.self_attn.q_proj.weight": "model-00003-of-00015.safetensors",
"model.layers.12.self_attn.v_proj.bias": "model-00003-of-00015.safetensors",
"model.layers.12.self_attn.v_proj.weight": "model-00003-of-00015.safetensors",
"model.layers.13.input_layernorm.weight": "model-00004-of-00015.safetensors",
"model.layers.13.mlp.down_proj.weight": "model-00004-of-00015.safetensors",
"model.layers.13.mlp.gate_proj.weight": "model-00004-of-00015.safetensors",
"model.layers.13.mlp.up_proj.weight": "model-00004-of-00015.safetensors",
"model.layers.13.post_attention_layernorm.weight": "model-00004-of-00015.safetensors",
"model.layers.13.self_attn.k_proj.bias": "model-00004-of-00015.safetensors",
"model.layers.13.self_attn.k_proj.weight": "model-00004-of-00015.safetensors",
"model.layers.13.self_attn.o_proj.weight": "model-00004-of-00015.safetensors",
"model.layers.13.self_attn.q_proj.bias": "model-00004-of-00015.safetensors",
"model.layers.13.self_attn.q_proj.weight": "model-00004-of-00015.safetensors",
"model.layers.13.self_attn.v_proj.bias": "model-00004-of-00015.safetensors",
"model.layers.13.self_attn.v_proj.weight": "model-00004-of-00015.safetensors",
"model.layers.14.input_layernorm.weight": "model-00004-of-00015.safetensors",
"model.layers.14.mlp.down_proj.weight": "model-00004-of-00015.safetensors",
"model.layers.14.mlp.gate_proj.weight": "model-00004-of-00015.safetensors",
"model.layers.14.mlp.up_proj.weight": "model-00004-of-00015.safetensors",
"model.layers.14.post_attention_layernorm.weight": "model-00004-of-00015.safetensors",
"model.layers.14.self_attn.k_proj.bias": "model-00004-of-00015.safetensors",
"model.layers.14.self_attn.k_proj.weight": "model-00004-of-00015.safetensors",
"model.layers.14.self_attn.o_proj.weight": "model-00004-of-00015.safetensors",
"model.layers.14.self_attn.q_proj.bias": "model-00004-of-00015.safetensors",
"model.layers.14.self_attn.q_proj.weight": "model-00004-of-00015.safetensors",
"model.layers.14.self_attn.v_proj.bias": "model-00004-of-00015.safetensors",
"model.layers.14.self_attn.v_proj.weight": "model-00004-of-00015.safetensors",
"model.layers.15.input_layernorm.weight": "model-00004-of-00015.safetensors",
"model.layers.15.mlp.down_proj.weight": "model-00004-of-00015.safetensors",
"model.layers.15.mlp.gate_proj.weight": "model-00004-of-00015.safetensors",
"model.layers.15.mlp.up_proj.weight": "model-00004-of-00015.safetensors",
"model.layers.15.post_attention_layernorm.weight": "model-00004-of-00015.safetensors",
"model.layers.15.self_attn.k_proj.bias": "model-00004-of-00015.safetensors",
"model.layers.15.self_attn.k_proj.weight": "model-00004-of-00015.safetensors",
"model.layers.15.self_attn.o_proj.weight": "model-00004-of-00015.safetensors",
"model.layers.15.self_attn.q_proj.bias": "model-00004-of-00015.safetensors",
"model.layers.15.self_attn.q_proj.weight": "model-00004-of-00015.safetensors",
"model.layers.15.self_attn.v_proj.bias": "model-00004-of-00015.safetensors",
"model.layers.15.self_attn.v_proj.weight": "model-00004-of-00015.safetensors",
"model.layers.16.input_layernorm.weight": "model-00005-of-00015.safetensors",
"model.layers.16.mlp.down_proj.weight": "model-00005-of-00015.safetensors",
"model.layers.16.mlp.gate_proj.weight": "model-00004-of-00015.safetensors",
"model.layers.16.mlp.up_proj.weight": "model-00004-of-00015.safetensors",
"model.layers.16.post_attention_layernorm.weight": "model-00005-of-00015.safetensors",
"model.layers.16.self_attn.k_proj.bias": "model-00004-of-00015.safetensors",
"model.layers.16.self_attn.k_proj.weight": "model-00004-of-00015.safetensors",
"model.layers.16.self_attn.o_proj.weight": "model-00004-of-00015.safetensors",
"model.layers.16.self_attn.q_proj.bias": "model-00004-of-00015.safetensors",
"model.layers.16.self_attn.q_proj.weight": "model-00004-of-00015.safetensors",
"model.layers.16.self_attn.v_proj.bias": "model-00004-of-00015.safetensors",
"model.layers.16.self_attn.v_proj.weight": "model-00004-of-00015.safetensors",
"model.layers.17.input_layernorm.weight": "model-00005-of-00015.safetensors",
"model.layers.17.mlp.down_proj.weight": "model-00005-of-00015.safetensors",
"model.layers.17.mlp.gate_proj.weight": "model-00005-of-00015.safetensors",
"model.layers.17.mlp.up_proj.weight": "model-00005-of-00015.safetensors",
"model.layers.17.post_attention_layernorm.weight": "model-00005-of-00015.safetensors",
"model.layers.17.self_attn.k_proj.bias": "model-00005-of-00015.safetensors",
"model.layers.17.self_attn.k_proj.weight": "model-00005-of-00015.safetensors",
"model.layers.17.self_attn.o_proj.weight": "model-00005-of-00015.safetensors",
"model.layers.17.self_attn.q_proj.bias": "model-00005-of-00015.safetensors",
"model.layers.17.self_attn.q_proj.weight": "model-00005-of-00015.safetensors",
"model.layers.17.self_attn.v_proj.bias": "model-00005-of-00015.safetensors",
"model.layers.17.self_attn.v_proj.weight": "model-00005-of-00015.safetensors",
"model.layers.18.input_layernorm.weight": "model-00005-of-00015.safetensors",
"model.layers.18.mlp.down_proj.weight": "model-00005-of-00015.safetensors",
"model.layers.18.mlp.gate_proj.weight": "model-00005-of-00015.safetensors",
"model.layers.18.mlp.up_proj.weight": "model-00005-of-00015.safetensors",
"model.layers.18.post_attention_layernorm.weight": "model-00005-of-00015.safetensors",
"model.layers.18.self_attn.k_proj.bias": "model-00005-of-00015.safetensors",
"model.layers.18.self_attn.k_proj.weight": "model-00005-of-00015.safetensors",
"model.layers.18.self_attn.o_proj.weight": "model-00005-of-00015.safetensors",
"model.layers.18.self_attn.q_proj.bias": "model-00005-of-00015.safetensors",
"model.layers.18.self_attn.q_proj.weight": "model-00005-of-00015.safetensors",
"model.layers.18.self_attn.v_proj.bias": "model-00005-of-00015.safetensors",
"model.layers.18.self_attn.v_proj.weight": "model-00005-of-00015.safetensors",
"model.layers.19.input_layernorm.weight": "model-00005-of-00015.safetensors",
"model.layers.19.mlp.down_proj.weight": "model-00005-of-00015.safetensors",
"model.layers.19.mlp.gate_proj.weight": "model-00005-of-00015.safetensors",
"model.layers.19.mlp.up_proj.weight": "model-00005-of-00015.safetensors",
"model.layers.19.post_attention_layernorm.weight": "model-00005-of-00015.safetensors",
"model.layers.19.self_attn.k_proj.bias": "model-00005-of-00015.safetensors",
"model.layers.19.self_attn.k_proj.weight": "model-00005-of-00015.safetensors",
"model.layers.19.self_attn.o_proj.weight": "model-00005-of-00015.safetensors",
"model.layers.19.self_attn.q_proj.bias": "model-00005-of-00015.safetensors",
"model.layers.19.self_attn.q_proj.weight": "model-00005-of-00015.safetensors",
"model.layers.19.self_attn.v_proj.bias": "model-00005-of-00015.safetensors",
"model.layers.19.self_attn.v_proj.weight": "model-00005-of-00015.safetensors",
"model.layers.2.input_layernorm.weight": "model-00001-of-00015.safetensors",
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00015.safetensors",
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00015.safetensors",
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00015.safetensors",
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00015.safetensors",
"model.layers.2.self_attn.k_proj.bias": "model-00001-of-00015.safetensors",
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00015.safetensors",
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00015.safetensors",
"model.layers.2.self_attn.q_proj.bias": "model-00001-of-00015.safetensors",
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00015.safetensors",
"model.layers.2.self_attn.v_proj.bias": "model-00001-of-00015.safetensors",
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00015.safetensors",
"model.layers.20.input_layernorm.weight": "model-00005-of-00015.safetensors",
"model.layers.20.mlp.down_proj.weight": "model-00005-of-00015.safetensors",
"model.layers.20.mlp.gate_proj.weight": "model-00005-of-00015.safetensors",
"model.layers.20.mlp.up_proj.weight": "model-00005-of-00015.safetensors",
"model.layers.20.post_attention_layernorm.weight": "model-00005-of-00015.safetensors",
"model.layers.20.self_attn.k_proj.bias": "model-00005-of-00015.safetensors",
"model.layers.20.self_attn.k_proj.weight": "model-00005-of-00015.safetensors",
"model.layers.20.self_attn.o_proj.weight": "model-00005-of-00015.safetensors",
"model.layers.20.self_attn.q_proj.bias": "model-00005-of-00015.safetensors",
"model.layers.20.self_attn.q_proj.weight": "model-00005-of-00015.safetensors",
"model.layers.20.self_attn.v_proj.bias": "model-00005-of-00015.safetensors",
"model.layers.20.self_attn.v_proj.weight": "model-00005-of-00015.safetensors",
"model.layers.21.input_layernorm.weight": "model-00006-of-00015.safetensors",
"model.layers.21.mlp.down_proj.weight": "model-00006-of-00015.safetensors",
"model.layers.21.mlp.gate_proj.weight": "model-00006-of-00015.safetensors",
"model.layers.21.mlp.up_proj.weight": "model-00006-of-00015.safetensors",
"model.layers.21.post_attention_layernorm.weight": "model-00006-of-00015.safetensors",
"model.layers.21.self_attn.k_proj.bias": "model-00005-of-00015.safetensors",
"model.layers.21.self_attn.k_proj.weight": "model-00005-of-00015.safetensors",
"model.layers.21.self_attn.o_proj.weight": "model-00005-of-00015.safetensors",
"model.layers.21.self_attn.q_proj.bias": "model-00005-of-00015.safetensors",
"model.layers.21.self_attn.q_proj.weight": "model-00005-of-00015.safetensors",
"model.layers.21.self_attn.v_proj.bias": "model-00005-of-00015.safetensors",
"model.layers.21.self_attn.v_proj.weight": "model-00005-of-00015.safetensors",
"model.layers.22.input_layernorm.weight": "model-00006-of-00015.safetensors",
"model.layers.22.mlp.down_proj.weight": "model-00006-of-00015.safetensors",
"model.layers.22.mlp.gate_proj.weight": "model-00006-of-00015.safetensors",
"model.layers.22.mlp.up_proj.weight": "model-00006-of-00015.safetensors",
"model.layers.22.post_attention_layernorm.weight": "model-00006-of-00015.safetensors",
"model.layers.22.self_attn.k_proj.bias": "model-00006-of-00015.safetensors",
"model.layers.22.self_attn.k_proj.weight": "model-00006-of-00015.safetensors",
"model.layers.22.self_attn.o_proj.weight": "model-00006-of-00015.safetensors",
"model.layers.22.self_attn.q_proj.bias": "model-00006-of-00015.safetensors",
"model.layers.22.self_attn.q_proj.weight": "model-00006-of-00015.safetensors",
"model.layers.22.self_attn.v_proj.bias": "model-00006-of-00015.safetensors",
"model.layers.22.self_attn.v_proj.weight": "model-00006-of-00015.safetensors",
"model.layers.23.input_layernorm.weight": "model-00006-of-00015.safetensors",
"model.layers.23.mlp.down_proj.weight": "model-00006-of-00015.safetensors",
"model.layers.23.mlp.gate_proj.weight": "model-00006-of-00015.safetensors",
"model.layers.23.mlp.up_proj.weight": "model-00006-of-00015.safetensors",
"model.layers.23.post_attention_layernorm.weight": "model-00006-of-00015.safetensors",
"model.layers.23.self_attn.k_proj.bias": "model-00006-of-00015.safetensors",
"model.layers.23.self_attn.k_proj.weight": "model-00006-of-00015.safetensors",
"model.layers.23.self_attn.o_proj.weight": "model-00006-of-00015.safetensors",
"model.layers.23.self_attn.q_proj.bias": "model-00006-of-00015.safetensors",
"model.layers.23.self_attn.q_proj.weight": "model-00006-of-00015.safetensors",
"model.layers.23.self_attn.v_proj.bias": "model-00006-of-00015.safetensors",
"model.layers.23.self_attn.v_proj.weight": "model-00006-of-00015.safetensors",
"model.layers.24.input_layernorm.weight": "model-00006-of-00015.safetensors",
"model.layers.24.mlp.down_proj.weight": "model-00006-of-00015.safetensors",
"model.layers.24.mlp.gate_proj.weight": "model-00006-of-00015.safetensors",
"model.layers.24.mlp.up_proj.weight": "model-00006-of-00015.safetensors",
"model.layers.24.post_attention_layernorm.weight": "model-00006-of-00015.safetensors",
"model.layers.24.self_attn.k_proj.bias": "model-00006-of-00015.safetensors",
"model.layers.24.self_attn.k_proj.weight": "model-00006-of-00015.safetensors",
"model.layers.24.self_attn.o_proj.weight": "model-00006-of-00015.safetensors",
"model.layers.24.self_attn.q_proj.bias": "model-00006-of-00015.safetensors",
"model.layers.24.self_attn.q_proj.weight": "model-00006-of-00015.safetensors",
"model.layers.24.self_attn.v_proj.bias": "model-00006-of-00015.safetensors",
"model.layers.24.self_attn.v_proj.weight": "model-00006-of-00015.safetensors",
"model.layers.25.input_layernorm.weight": "model-00007-of-00015.safetensors",
"model.layers.25.mlp.down_proj.weight": "model-00007-of-00015.safetensors",
"model.layers.25.mlp.gate_proj.weight": "model-00006-of-00015.safetensors",
"model.layers.25.mlp.up_proj.weight": "model-00006-of-00015.safetensors",
"model.layers.25.post_attention_layernorm.weight": "model-00007-of-00015.safetensors",
"model.layers.25.self_attn.k_proj.bias": "model-00006-of-00015.safetensors",
"model.layers.25.self_attn.k_proj.weight": "model-00006-of-00015.safetensors",
"model.layers.25.self_attn.o_proj.weight": "model-00006-of-00015.safetensors",
"model.layers.25.self_attn.q_proj.bias": "model-00006-of-00015.safetensors",
"model.layers.25.self_attn.q_proj.weight": "model-00006-of-00015.safetensors",
"model.layers.25.self_attn.v_proj.bias": "model-00006-of-00015.safetensors",
"model.layers.25.self_attn.v_proj.weight": "model-00006-of-00015.safetensors",
"model.layers.26.input_layernorm.weight": "model-00007-of-00015.safetensors",
"model.layers.26.mlp.down_proj.weight": "model-00007-of-00015.safetensors",
"model.layers.26.mlp.gate_proj.weight": "model-00007-of-00015.safetensors",
"model.layers.26.mlp.up_proj.weight": "model-00007-of-00015.safetensors",
"model.layers.26.post_attention_layernorm.weight": "model-00007-of-00015.safetensors",
"model.layers.26.self_attn.k_proj.bias": "model-00007-of-00015.safetensors",
"model.layers.26.self_attn.k_proj.weight": "model-00007-of-00015.safetensors",
"model.layers.26.self_attn.o_proj.weight": "model-00007-of-00015.safetensors",
"model.layers.26.self_attn.q_proj.bias": "model-00007-of-00015.safetensors",
"model.layers.26.self_attn.q_proj.weight": "model-00007-of-00015.safetensors",
"model.layers.26.self_attn.v_proj.bias": "model-00007-of-00015.safetensors",
"model.layers.26.self_attn.v_proj.weight": "model-00007-of-00015.safetensors",
"model.layers.27.input_layernorm.weight": "model-00007-of-00015.safetensors",
"model.layers.27.mlp.down_proj.weight": "model-00007-of-00015.safetensors",
"model.layers.27.mlp.gate_proj.weight": "model-00007-of-00015.safetensors",
"model.layers.27.mlp.up_proj.weight": "model-00007-of-00015.safetensors",
"model.layers.27.post_attention_layernorm.weight": "model-00007-of-00015.safetensors",
"model.layers.27.self_attn.k_proj.bias": "model-00007-of-00015.safetensors",
"model.layers.27.self_attn.k_proj.weight": "model-00007-of-00015.safetensors",
"model.layers.27.self_attn.o_proj.weight": "model-00007-of-00015.safetensors",
"model.layers.27.self_attn.q_proj.bias": "model-00007-of-00015.safetensors",
"model.layers.27.self_attn.q_proj.weight": "model-00007-of-00015.safetensors",
"model.layers.27.self_attn.v_proj.bias": "model-00007-of-00015.safetensors",
"model.layers.27.self_attn.v_proj.weight": "model-00007-of-00015.safetensors",
"model.layers.28.input_layernorm.weight": "model-00007-of-00015.safetensors",
"model.layers.28.mlp.down_proj.weight": "model-00007-of-00015.safetensors",
"model.layers.28.mlp.gate_proj.weight": "model-00007-of-00015.safetensors",
"model.layers.28.mlp.up_proj.weight": "model-00007-of-00015.safetensors",
"model.layers.28.post_attention_layernorm.weight": "model-00007-of-00015.safetensors",
"model.layers.28.self_attn.k_proj.bias": "model-00007-of-00015.safetensors",
"model.layers.28.self_attn.k_proj.weight": "model-00007-of-00015.safetensors",
"model.layers.28.self_attn.o_proj.weight": "model-00007-of-00015.safetensors",
"model.layers.28.self_attn.q_proj.bias": "model-00007-of-00015.safetensors",
"model.layers.28.self_attn.q_proj.weight": "model-00007-of-00015.safetensors",
"model.layers.28.self_attn.v_proj.bias": "model-00007-of-00015.safetensors",
"model.layers.28.self_attn.v_proj.weight": "model-00007-of-00015.safetensors",
"model.layers.29.input_layernorm.weight": "model-00007-of-00015.safetensors",
"model.layers.29.mlp.down_proj.weight": "model-00007-of-00015.safetensors",
"model.layers.29.mlp.gate_proj.weight": "model-00007-of-00015.safetensors",
"model.layers.29.mlp.up_proj.weight": "model-00007-of-00015.safetensors",
"model.layers.29.post_attention_layernorm.weight": "model-00007-of-00015.safetensors",
"model.layers.29.self_attn.k_proj.bias": "model-00007-of-00015.safetensors",
"model.layers.29.self_attn.k_proj.weight": "model-00007-of-00015.safetensors",
"model.layers.29.self_attn.o_proj.weight": "model-00007-of-00015.safetensors",
"model.layers.29.self_attn.q_proj.bias": "model-00007-of-00015.safetensors",
"model.layers.29.self_attn.q_proj.weight": "model-00007-of-00015.safetensors",
"model.layers.29.self_attn.v_proj.bias": "model-00007-of-00015.safetensors",
"model.layers.29.self_attn.v_proj.weight": "model-00007-of-00015.safetensors",
"model.layers.3.input_layernorm.weight": "model-00002-of-00015.safetensors",
"model.layers.3.mlp.down_proj.weight": "model-00002-of-00015.safetensors",
"model.layers.3.mlp.gate_proj.weight": "model-00002-of-00015.safetensors",
"model.layers.3.mlp.up_proj.weight": "model-00002-of-00015.safetensors",
"model.layers.3.post_attention_layernorm.weight": "model-00002-of-00015.safetensors",
"model.layers.3.self_attn.k_proj.bias": "model-00001-of-00015.safetensors",
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00015.safetensors",
"model.layers.3.self_attn.o_proj.weight": "model-00002-of-00015.safetensors",
"model.layers.3.self_attn.q_proj.bias": "model-00001-of-00015.safetensors",
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00015.safetensors",
"model.layers.3.self_attn.v_proj.bias": "model-00001-of-00015.safetensors",
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00015.safetensors",
"model.layers.30.input_layernorm.weight": "model-00008-of-00015.safetensors",
"model.layers.30.mlp.down_proj.weight": "model-00008-of-00015.safetensors",
"model.layers.30.mlp.gate_proj.weight": "model-00008-of-00015.safetensors",
"model.layers.30.mlp.up_proj.weight": "model-00008-of-00015.safetensors",
"model.layers.30.post_attention_layernorm.weight": "model-00008-of-00015.safetensors",
"model.layers.30.self_attn.k_proj.bias": "model-00007-of-00015.safetensors",
"model.layers.30.self_attn.k_proj.weight": "model-00007-of-00015.safetensors",
"model.layers.30.self_attn.o_proj.weight": "model-00007-of-00015.safetensors",
"model.layers.30.self_attn.q_proj.bias": "model-00007-of-00015.safetensors",
"model.layers.30.self_attn.q_proj.weight": "model-00007-of-00015.safetensors",
"model.layers.30.self_attn.v_proj.bias": "model-00007-of-00015.safetensors",
"model.layers.30.self_attn.v_proj.weight": "model-00007-of-00015.safetensors",
"model.layers.31.input_layernorm.weight": "model-00008-of-00015.safetensors",
"model.layers.31.mlp.down_proj.weight": "model-00008-of-00015.safetensors",
"model.layers.31.mlp.gate_proj.weight": "model-00008-of-00015.safetensors",
"model.layers.31.mlp.up_proj.weight": "model-00008-of-00015.safetensors",
"model.layers.31.post_attention_layernorm.weight": "model-00008-of-00015.safetensors",
"model.layers.31.self_attn.k_proj.bias": "model-00008-of-00015.safetensors",
"model.layers.31.self_attn.k_proj.weight": "model-00008-of-00015.safetensors",
"model.layers.31.self_attn.o_proj.weight": "model-00008-of-00015.safetensors",
"model.layers.31.self_attn.q_proj.bias": "model-00008-of-00015.safetensors",
"model.layers.31.self_attn.q_proj.weight": "model-00008-of-00015.safetensors",
"model.layers.31.self_attn.v_proj.bias": "model-00008-of-00015.safetensors",
"model.layers.31.self_attn.v_proj.weight": "model-00008-of-00015.safetensors",
"model.layers.32.input_layernorm.weight": "model-00008-of-00015.safetensors",
"model.layers.32.mlp.down_proj.weight": "model-00008-of-00015.safetensors",
"model.layers.32.mlp.gate_proj.weight": "model-00008-of-00015.safetensors",
"model.layers.32.mlp.up_proj.weight": "model-00008-of-00015.safetensors",
"model.layers.32.post_attention_layernorm.weight": "model-00008-of-00015.safetensors",
"model.layers.32.self_attn.k_proj.bias": "model-00008-of-00015.safetensors",
"model.layers.32.self_attn.k_proj.weight": "model-00008-of-00015.safetensors",
"model.layers.32.self_attn.o_proj.weight": "model-00008-of-00015.safetensors",
"model.layers.32.self_attn.q_proj.bias": "model-00008-of-00015.safetensors",
"model.layers.32.self_attn.q_proj.weight": "model-00008-of-00015.safetensors",
"model.layers.32.self_attn.v_proj.bias": "model-00008-of-00015.safetensors",
"model.layers.32.self_attn.v_proj.weight": "model-00008-of-00015.safetensors",
"model.layers.33.input_layernorm.weight": "model-00008-of-00015.safetensors",
"model.layers.33.mlp.down_proj.weight": "model-00008-of-00015.safetensors",
"model.layers.33.mlp.gate_proj.weight": "model-00008-of-00015.safetensors",
"model.layers.33.mlp.up_proj.weight": "model-00008-of-00015.safetensors",
"model.layers.33.post_attention_layernorm.weight": "model-00008-of-00015.safetensors",
"model.layers.33.self_attn.k_proj.bias": "model-00008-of-00015.safetensors",
"model.layers.33.self_attn.k_proj.weight": "model-00008-of-00015.safetensors",
"model.layers.33.self_attn.o_proj.weight": "model-00008-of-00015.safetensors",
"model.layers.33.self_attn.q_proj.bias": "model-00008-of-00015.safetensors",
"model.layers.33.self_attn.q_proj.weight": "model-00008-of-00015.safetensors",
"model.layers.33.self_attn.v_proj.bias": "model-00008-of-00015.safetensors",
"model.layers.33.self_attn.v_proj.weight": "model-00008-of-00015.safetensors",
"model.layers.34.input_layernorm.weight": "model-00009-of-00015.safetensors",
"model.layers.34.mlp.down_proj.weight": "model-00009-of-00015.safetensors",
"model.layers.34.mlp.gate_proj.weight": "model-00008-of-00015.safetensors",
"model.layers.34.mlp.up_proj.weight": "model-00008-of-00015.safetensors",
"model.layers.34.post_attention_layernorm.weight": "model-00009-of-00015.safetensors",
"model.layers.34.self_attn.k_proj.bias": "model-00008-of-00015.safetensors",
"model.layers.34.self_attn.k_proj.weight": "model-00008-of-00015.safetensors",
"model.layers.34.self_attn.o_proj.weight": "model-00008-of-00015.safetensors",
"model.layers.34.self_attn.q_proj.bias": "model-00008-of-00015.safetensors",
"model.layers.34.self_attn.q_proj.weight": "model-00008-of-00015.safetensors",
"model.layers.34.self_attn.v_proj.bias": "model-00008-of-00015.safetensors",
"model.layers.34.self_attn.v_proj.weight": "model-00008-of-00015.safetensors",
"model.layers.35.input_layernorm.weight": "model-00009-of-00015.safetensors",
"model.layers.35.mlp.down_proj.weight": "model-00009-of-00015.safetensors",
"model.layers.35.mlp.gate_proj.weight": "model-00009-of-00015.safetensors",
"model.layers.35.mlp.up_proj.weight": "model-00009-of-00015.safetensors",
"model.layers.35.post_attention_layernorm.weight": "model-00009-of-00015.safetensors",
"model.layers.35.self_attn.k_proj.bias": "model-00009-of-00015.safetensors",
"model.layers.35.self_attn.k_proj.weight": "model-00009-of-00015.safetensors",
"model.layers.35.self_attn.o_proj.weight": "model-00009-of-00015.safetensors",
"model.layers.35.self_attn.q_proj.bias": "model-00009-of-00015.safetensors",
"model.layers.35.self_attn.q_proj.weight": "model-00009-of-00015.safetensors",
"model.layers.35.self_attn.v_proj.bias": "model-00009-of-00015.safetensors",
"model.layers.35.self_attn.v_proj.weight": "model-00009-of-00015.safetensors",
"model.layers.36.input_layernorm.weight": "model-00009-of-00015.safetensors",
"model.layers.36.mlp.down_proj.weight": "model-00009-of-00015.safetensors",
"model.layers.36.mlp.gate_proj.weight": "model-00009-of-00015.safetensors",
"model.layers.36.mlp.up_proj.weight": "model-00009-of-00015.safetensors",
"model.layers.36.post_attention_layernorm.weight": "model-00009-of-00015.safetensors",
"model.layers.36.self_attn.k_proj.bias": "model-00009-of-00015.safetensors",
"model.layers.36.self_attn.k_proj.weight": "model-00009-of-00015.safetensors",
"model.layers.36.self_attn.o_proj.weight": "model-00009-of-00015.safetensors",
"model.layers.36.self_attn.q_proj.bias": "model-00009-of-00015.safetensors",
"model.layers.36.self_attn.q_proj.weight": "model-00009-of-00015.safetensors",
"model.layers.36.self_attn.v_proj.bias": "model-00009-of-00015.safetensors",
"model.layers.36.self_attn.v_proj.weight": "model-00009-of-00015.safetensors",
"model.layers.37.input_layernorm.weight": "model-00009-of-00015.safetensors",
"model.layers.37.mlp.down_proj.weight": "model-00009-of-00015.safetensors",
"model.layers.37.mlp.gate_proj.weight": "model-00009-of-00015.safetensors",
"model.layers.37.mlp.up_proj.weight": "model-00009-of-00015.safetensors",
"model.layers.37.post_attention_layernorm.weight": "model-00009-of-00015.safetensors",
"model.layers.37.self_attn.k_proj.bias": "model-00009-of-00015.safetensors",
"model.layers.37.self_attn.k_proj.weight": "model-00009-of-00015.safetensors",
"model.layers.37.self_attn.o_proj.weight": "model-00009-of-00015.safetensors",
"model.layers.37.self_attn.q_proj.bias": "model-00009-of-00015.safetensors",
"model.layers.37.self_attn.q_proj.weight": "model-00009-of-00015.safetensors",
"model.layers.37.self_attn.v_proj.bias": "model-00009-of-00015.safetensors",
"model.layers.37.self_attn.v_proj.weight": "model-00009-of-00015.safetensors",
"model.layers.38.input_layernorm.weight": "model-00009-of-00015.safetensors",
"model.layers.38.mlp.down_proj.weight": "model-00009-of-00015.safetensors",
"model.layers.38.mlp.gate_proj.weight": "model-00009-of-00015.safetensors",
"model.layers.38.mlp.up_proj.weight": "model-00009-of-00015.safetensors",
"model.layers.38.post_attention_layernorm.weight": "model-00009-of-00015.safetensors",
"model.layers.38.self_attn.k_proj.bias": "model-00009-of-00015.safetensors",
"model.layers.38.self_attn.k_proj.weight": "model-00009-of-00015.safetensors",
"model.layers.38.self_attn.o_proj.weight": "model-00009-of-00015.safetensors",
"model.layers.38.self_attn.q_proj.bias": "model-00009-of-00015.safetensors",
"model.layers.38.self_attn.q_proj.weight": "model-00009-of-00015.safetensors",
"model.layers.38.self_attn.v_proj.bias": "model-00009-of-00015.safetensors",
"model.layers.38.self_attn.v_proj.weight": "model-00009-of-00015.safetensors",
"model.layers.39.input_layernorm.weight": "model-00010-of-00015.safetensors",
"model.layers.39.mlp.down_proj.weight": "model-00010-of-00015.safetensors",
"model.layers.39.mlp.gate_proj.weight": "model-00010-of-00015.safetensors",
"model.layers.39.mlp.up_proj.weight": "model-00010-of-00015.safetensors",
"model.layers.39.post_attention_layernorm.weight": "model-00010-of-00015.safetensors",
"model.layers.39.self_attn.k_proj.bias": "model-00009-of-00015.safetensors",
"model.layers.39.self_attn.k_proj.weight": "model-00009-of-00015.safetensors",
"model.layers.39.self_attn.o_proj.weight": "model-00009-of-00015.safetensors",
"model.layers.39.self_attn.q_proj.bias": "model-00009-of-00015.safetensors",
"model.layers.39.self_attn.q_proj.weight": "model-00009-of-00015.safetensors",
"model.layers.39.self_attn.v_proj.bias": "model-00009-of-00015.safetensors",
"model.layers.39.self_attn.v_proj.weight": "model-00009-of-00015.safetensors",
"model.layers.4.input_layernorm.weight": "model-00002-of-00015.safetensors",
"model.layers.4.mlp.down_proj.weight": "model-00002-of-00015.safetensors",
"model.layers.4.mlp.gate_proj.weight": "model-00002-of-00015.safetensors",
"model.layers.4.mlp.up_proj.weight": "model-00002-of-00015.safetensors",
"model.layers.4.post_attention_layernorm.weight": "model-00002-of-00015.safetensors",
"model.layers.4.self_attn.k_proj.bias": "model-00002-of-00015.safetensors",
"model.layers.4.self_attn.k_proj.weight": "model-00002-of-00015.safetensors",
"model.layers.4.self_attn.o_proj.weight": "model-00002-of-00015.safetensors",
"model.layers.4.self_attn.q_proj.bias": "model-00002-of-00015.safetensors",
"model.layers.4.self_attn.q_proj.weight": "model-00002-of-00015.safetensors",
"model.layers.4.self_attn.v_proj.bias": "model-00002-of-00015.safetensors",
"model.layers.4.self_attn.v_proj.weight": "model-00002-of-00015.safetensors",
"model.layers.40.input_layernorm.weight": "model-00010-of-00015.safetensors",
"model.layers.40.mlp.down_proj.weight": "model-00010-of-00015.safetensors",
"model.layers.40.mlp.gate_proj.weight": "model-00010-of-00015.safetensors",
"model.layers.40.mlp.up_proj.weight": "model-00010-of-00015.safetensors",
"model.layers.40.post_attention_layernorm.weight": "model-00010-of-00015.safetensors",
"model.layers.40.self_attn.k_proj.bias": "model-00010-of-00015.safetensors",
"model.layers.40.self_attn.k_proj.weight": "model-00010-of-00015.safetensors",
"model.layers.40.self_attn.o_proj.weight": "model-00010-of-00015.safetensors",
"model.layers.40.self_attn.q_proj.bias": "model-00010-of-00015.safetensors",
"model.layers.40.self_attn.q_proj.weight": "model-00010-of-00015.safetensors",
"model.layers.40.self_attn.v_proj.bias": "model-00010-of-00015.safetensors",
"model.layers.40.self_attn.v_proj.weight": "model-00010-of-00015.safetensors",
"model.layers.41.input_layernorm.weight": "model-00010-of-00015.safetensors",
"model.layers.41.mlp.down_proj.weight": "model-00010-of-00015.safetensors",
"model.layers.41.mlp.gate_proj.weight": "model-00010-of-00015.safetensors",
"model.layers.41.mlp.up_proj.weight": "model-00010-of-00015.safetensors",
"model.layers.41.post_attention_layernorm.weight": "model-00010-of-00015.safetensors",
"model.layers.41.self_attn.k_proj.bias": "model-00010-of-00015.safetensors",
"model.layers.41.self_attn.k_proj.weight": "model-00010-of-00015.safetensors",
"model.layers.41.self_attn.o_proj.weight": "model-00010-of-00015.safetensors",
"model.layers.41.self_attn.q_proj.bias": "model-00010-of-00015.safetensors",
"model.layers.41.self_attn.q_proj.weight": "model-00010-of-00015.safetensors",
"model.layers.41.self_attn.v_proj.bias": "model-00010-of-00015.safetensors",
"model.layers.41.self_attn.v_proj.weight": "model-00010-of-00015.safetensors",
"model.layers.42.input_layernorm.weight": "model-00010-of-00015.safetensors",
"model.layers.42.mlp.down_proj.weight": "model-00010-of-00015.safetensors",
"model.layers.42.mlp.gate_proj.weight": "model-00010-of-00015.safetensors",
"model.layers.42.mlp.up_proj.weight": "model-00010-of-00015.safetensors",
"model.layers.42.post_attention_layernorm.weight": "model-00010-of-00015.safetensors",
"model.layers.42.self_attn.k_proj.bias": "model-00010-of-00015.safetensors",
"model.layers.42.self_attn.k_proj.weight": "model-00010-of-00015.safetensors",
"model.layers.42.self_attn.o_proj.weight": "model-00010-of-00015.safetensors",
"model.layers.42.self_attn.q_proj.bias": "model-00010-of-00015.safetensors",
"model.layers.42.self_attn.q_proj.weight": "model-00010-of-00015.safetensors",
"model.layers.42.self_attn.v_proj.bias": "model-00010-of-00015.safetensors",
"model.layers.42.self_attn.v_proj.weight": "model-00010-of-00015.safetensors",
"model.layers.43.input_layernorm.weight": "model-00011-of-00015.safetensors",
"model.layers.43.mlp.down_proj.weight": "model-00011-of-00015.safetensors",
"model.layers.43.mlp.gate_proj.weight": "model-00010-of-00015.safetensors",
"model.layers.43.mlp.up_proj.weight": "model-00010-of-00015.safetensors",
"model.layers.43.post_attention_layernorm.weight": "model-00011-of-00015.safetensors",
"model.layers.43.self_attn.k_proj.bias": "model-00010-of-00015.safetensors",
"model.layers.43.self_attn.k_proj.weight": "model-00010-of-00015.safetensors",
"model.layers.43.self_attn.o_proj.weight": "model-00010-of-00015.safetensors",
"model.layers.43.self_attn.q_proj.bias": "model-00010-of-00015.safetensors",
"model.layers.43.self_attn.q_proj.weight": "model-00010-of-00015.safetensors",
"model.layers.43.self_attn.v_proj.bias": "model-00010-of-00015.safetensors",
"model.layers.43.self_attn.v_proj.weight": "model-00010-of-00015.safetensors",
"model.layers.44.input_layernorm.weight": "model-00011-of-00015.safetensors",
"model.layers.44.mlp.down_proj.weight": "model-00011-of-00015.safetensors",
"model.layers.44.mlp.gate_proj.weight": "model-00011-of-00015.safetensors",
"model.layers.44.mlp.up_proj.weight": "model-00011-of-00015.safetensors",
"model.layers.44.post_attention_layernorm.weight": "model-00011-of-00015.safetensors",
"model.layers.44.self_attn.k_proj.bias": "model-00011-of-00015.safetensors",
"model.layers.44.self_attn.k_proj.weight": "model-00011-of-00015.safetensors",
"model.layers.44.self_attn.o_proj.weight": "model-00011-of-00015.safetensors",
"model.layers.44.self_attn.q_proj.bias": "model-00011-of-00015.safetensors",
"model.layers.44.self_attn.q_proj.weight": "model-00011-of-00015.safetensors",
"model.layers.44.self_attn.v_proj.bias": "model-00011-of-00015.safetensors",
"model.layers.44.self_attn.v_proj.weight": "model-00011-of-00015.safetensors",
"model.layers.45.input_layernorm.weight": "model-00011-of-00015.safetensors",
"model.layers.45.mlp.down_proj.weight": "model-00011-of-00015.safetensors",
"model.layers.45.mlp.gate_proj.weight": "model-00011-of-00015.safetensors",
"model.layers.45.mlp.up_proj.weight": "model-00011-of-00015.safetensors",
"model.layers.45.post_attention_layernorm.weight": "model-00011-of-00015.safetensors",
"model.layers.45.self_attn.k_proj.bias": "model-00011-of-00015.safetensors",
"model.layers.45.self_attn.k_proj.weight": "model-00011-of-00015.safetensors",
"model.layers.45.self_attn.o_proj.weight": "model-00011-of-00015.safetensors",
"model.layers.45.self_attn.q_proj.bias": "model-00011-of-00015.safetensors",
"model.layers.45.self_attn.q_proj.weight": "model-00011-of-00015.safetensors",
"model.layers.45.self_attn.v_proj.bias": "model-00011-of-00015.safetensors",
"model.layers.45.self_attn.v_proj.weight": "model-00011-of-00015.safetensors",
"model.layers.46.input_layernorm.weight": "model-00011-of-00015.safetensors",
"model.layers.46.mlp.down_proj.weight": "model-00011-of-00015.safetensors",
"model.layers.46.mlp.gate_proj.weight": "model-00011-of-00015.safetensors",
"model.layers.46.mlp.up_proj.weight": "model-00011-of-00015.safetensors",
"model.layers.46.post_attention_layernorm.weight": "model-00011-of-00015.safetensors",
"model.layers.46.self_attn.k_proj.bias": "model-00011-of-00015.safetensors",
"model.layers.46.self_attn.k_proj.weight": "model-00011-of-00015.safetensors",
"model.layers.46.self_attn.o_proj.weight": "model-00011-of-00015.safetensors",
"model.layers.46.self_attn.q_proj.bias": "model-00011-of-00015.safetensors",
"model.layers.46.self_attn.q_proj.weight": "model-00011-of-00015.safetensors",
"model.layers.46.self_attn.v_proj.bias": "model-00011-of-00015.safetensors",
"model.layers.46.self_attn.v_proj.weight": "model-00011-of-00015.safetensors",
"model.layers.47.input_layernorm.weight": "model-00011-of-00015.safetensors",
"model.layers.47.mlp.down_proj.weight": "model-00011-of-00015.safetensors",
"model.layers.47.mlp.gate_proj.weight": "model-00011-of-00015.safetensors",
"model.layers.47.mlp.up_proj.weight": "model-00011-of-00015.safetensors",
"model.layers.47.post_attention_layernorm.weight": "model-00011-of-00015.safetensors",
"model.layers.47.self_attn.k_proj.bias": "model-00011-of-00015.safetensors",
"model.layers.47.self_attn.k_proj.weight": "model-00011-of-00015.safetensors",
"model.layers.47.self_attn.o_proj.weight": "model-00011-of-00015.safetensors",
"model.layers.47.self_attn.q_proj.bias": "model-00011-of-00015.safetensors",
"model.layers.47.self_attn.q_proj.weight": "model-00011-of-00015.safetensors",
"model.layers.47.self_attn.v_proj.bias": "model-00011-of-00015.safetensors",
"model.layers.47.self_attn.v_proj.weight": "model-00011-of-00015.safetensors",
"model.layers.48.input_layernorm.weight": "model-00012-of-00015.safetensors",
"model.layers.48.mlp.down_proj.weight": "model-00012-of-00015.safetensors",
"model.layers.48.mlp.gate_proj.weight": "model-00012-of-00015.safetensors",
"model.layers.48.mlp.up_proj.weight": "model-00012-of-00015.safetensors",
"model.layers.48.post_attention_layernorm.weight": "model-00012-of-00015.safetensors",
"model.layers.48.self_attn.k_proj.bias": "model-00011-of-00015.safetensors",
"model.layers.48.self_attn.k_proj.weight": "model-00011-of-00015.safetensors",
"model.layers.48.self_attn.o_proj.weight": "model-00011-of-00015.safetensors",
"model.layers.48.self_attn.q_proj.bias": "model-00011-of-00015.safetensors",
"model.layers.48.self_attn.q_proj.weight": "model-00011-of-00015.safetensors",
"model.layers.48.self_attn.v_proj.bias": "model-00011-of-00015.safetensors",
"model.layers.48.self_attn.v_proj.weight": "model-00011-of-00015.safetensors",
"model.layers.49.input_layernorm.weight": "model-00012-of-00015.safetensors",
"model.layers.49.mlp.down_proj.weight": "model-00012-of-00015.safetensors",
"model.layers.49.mlp.gate_proj.weight": "model-00012-of-00015.safetensors",
"model.layers.49.mlp.up_proj.weight": "model-00012-of-00015.safetensors",
"model.layers.49.post_attention_layernorm.weight": "model-00012-of-00015.safetensors",
"model.layers.49.self_attn.k_proj.bias": "model-00012-of-00015.safetensors",
"model.layers.49.self_attn.k_proj.weight": "model-00012-of-00015.safetensors",
"model.layers.49.self_attn.o_proj.weight": "model-00012-of-00015.safetensors",
"model.layers.49.self_attn.q_proj.bias": "model-00012-of-00015.safetensors",
"model.layers.49.self_attn.q_proj.weight": "model-00012-of-00015.safetensors",
"model.layers.49.self_attn.v_proj.bias": "model-00012-of-00015.safetensors",
"model.layers.49.self_attn.v_proj.weight": "model-00012-of-00015.safetensors",
"model.layers.5.input_layernorm.weight": "model-00002-of-00015.safetensors",
"model.layers.5.mlp.down_proj.weight": "model-00002-of-00015.safetensors",
"model.layers.5.mlp.gate_proj.weight": "model-00002-of-00015.safetensors",
"model.layers.5.mlp.up_proj.weight": "model-00002-of-00015.safetensors",
"model.layers.5.post_attention_layernorm.weight": "model-00002-of-00015.safetensors",
"model.layers.5.self_attn.k_proj.bias": "model-00002-of-00015.safetensors",
"model.layers.5.self_attn.k_proj.weight": "model-00002-of-00015.safetensors",
"model.layers.5.self_attn.o_proj.weight": "model-00002-of-00015.safetensors",
"model.layers.5.self_attn.q_proj.bias": "model-00002-of-00015.safetensors",
"model.layers.5.self_attn.q_proj.weight": "model-00002-of-00015.safetensors",
"model.layers.5.self_attn.v_proj.bias": "model-00002-of-00015.safetensors",
"model.layers.5.self_attn.v_proj.weight": "model-00002-of-00015.safetensors",
"model.layers.50.input_layernorm.weight": "model-00012-of-00015.safetensors",
"model.layers.50.mlp.down_proj.weight": "model-00012-of-00015.safetensors",
"model.layers.50.mlp.gate_proj.weight": "model-00012-of-00015.safetensors",
"model.layers.50.mlp.up_proj.weight": "model-00012-of-00015.safetensors",
"model.layers.50.post_attention_layernorm.weight": "model-00012-of-00015.safetensors",
"model.layers.50.self_attn.k_proj.bias": "model-00012-of-00015.safetensors",
"model.layers.50.self_attn.k_proj.weight": "model-00012-of-00015.safetensors",
"model.layers.50.self_attn.o_proj.weight": "model-00012-of-00015.safetensors",
"model.layers.50.self_attn.q_proj.bias": "model-00012-of-00015.safetensors",
"model.layers.50.self_attn.q_proj.weight": "model-00012-of-00015.safetensors",
"model.layers.50.self_attn.v_proj.bias": "model-00012-of-00015.safetensors",
"model.layers.50.self_attn.v_proj.weight": "model-00012-of-00015.safetensors",
"model.layers.51.input_layernorm.weight": "model-00012-of-00015.safetensors",
"model.layers.51.mlp.down_proj.weight": "model-00012-of-00015.safetensors",
"model.layers.51.mlp.gate_proj.weight": "model-00012-of-00015.safetensors",
"model.layers.51.mlp.up_proj.weight": "model-00012-of-00015.safetensors",
"model.layers.51.post_attention_layernorm.weight": "model-00012-of-00015.safetensors",
"model.layers.51.self_attn.k_proj.bias": "model-00012-of-00015.safetensors",
"model.layers.51.self_attn.k_proj.weight": "model-00012-of-00015.safetensors",
"model.layers.51.self_attn.o_proj.weight": "model-00012-of-00015.safetensors",
"model.layers.51.self_attn.q_proj.bias": "model-00012-of-00015.safetensors",
"model.layers.51.self_attn.q_proj.weight": "model-00012-of-00015.safetensors",
"model.layers.51.self_attn.v_proj.bias": "model-00012-of-00015.safetensors",
"model.layers.51.self_attn.v_proj.weight": "model-00012-of-00015.safetensors",
"model.layers.52.input_layernorm.weight": "model-00013-of-00015.safetensors",
"model.layers.52.mlp.down_proj.weight": "model-00013-of-00015.safetensors",
"model.layers.52.mlp.gate_proj.weight": "model-00012-of-00015.safetensors",
"model.layers.52.mlp.up_proj.weight": "model-00012-of-00015.safetensors",
"model.layers.52.post_attention_layernorm.weight": "model-00013-of-00015.safetensors",
"model.layers.52.self_attn.k_proj.bias": "model-00012-of-00015.safetensors",
"model.layers.52.self_attn.k_proj.weight": "model-00012-of-00015.safetensors",
"model.layers.52.self_attn.o_proj.weight": "model-00012-of-00015.safetensors",
"model.layers.52.self_attn.q_proj.bias": "model-00012-of-00015.safetensors",
"model.layers.52.self_attn.q_proj.weight": "model-00012-of-00015.safetensors",
"model.layers.52.self_attn.v_proj.bias": "model-00012-of-00015.safetensors",
"model.layers.52.self_attn.v_proj.weight": "model-00012-of-00015.safetensors",
"model.layers.53.input_layernorm.weight": "model-00013-of-00015.safetensors",
"model.layers.53.mlp.down_proj.weight": "model-00013-of-00015.safetensors",
"model.layers.53.mlp.gate_proj.weight": "model-00013-of-00015.safetensors",
"model.layers.53.mlp.up_proj.weight": "model-00013-of-00015.safetensors",
"model.layers.53.post_attention_layernorm.weight": "model-00013-of-00015.safetensors",
"model.layers.53.self_attn.k_proj.bias": "model-00013-of-00015.safetensors",
"model.layers.53.self_attn.k_proj.weight": "model-00013-of-00015.safetensors",
"model.layers.53.self_attn.o_proj.weight": "model-00013-of-00015.safetensors",
"model.layers.53.self_attn.q_proj.bias": "model-00013-of-00015.safetensors",
"model.layers.53.self_attn.q_proj.weight": "model-00013-of-00015.safetensors",
"model.layers.53.self_attn.v_proj.bias": "model-00013-of-00015.safetensors",
"model.layers.53.self_attn.v_proj.weight": "model-00013-of-00015.safetensors",
"model.layers.54.input_layernorm.weight": "model-00013-of-00015.safetensors",
"model.layers.54.mlp.down_proj.weight": "model-00013-of-00015.safetensors",
"model.layers.54.mlp.gate_proj.weight": "model-00013-of-00015.safetensors",
"model.layers.54.mlp.up_proj.weight": "model-00013-of-00015.safetensors",
"model.layers.54.post_attention_layernorm.weight": "model-00013-of-00015.safetensors",
"model.layers.54.self_attn.k_proj.bias": "model-00013-of-00015.safetensors",
"model.layers.54.self_attn.k_proj.weight": "model-00013-of-00015.safetensors",
"model.layers.54.self_attn.o_proj.weight": "model-00013-of-00015.safetensors",
"model.layers.54.self_attn.q_proj.bias": "model-00013-of-00015.safetensors",
"model.layers.54.self_attn.q_proj.weight": "model-00013-of-00015.safetensors",
"model.layers.54.self_attn.v_proj.bias": "model-00013-of-00015.safetensors",
"model.layers.54.self_attn.v_proj.weight": "model-00013-of-00015.safetensors",
"model.layers.55.input_layernorm.weight": "model-00013-of-00015.safetensors",
"model.layers.55.mlp.down_proj.weight": "model-00013-of-00015.safetensors",
"model.layers.55.mlp.gate_proj.weight": "model-00013-of-00015.safetensors",
"model.layers.55.mlp.up_proj.weight": "model-00013-of-00015.safetensors",
"model.layers.55.post_attention_layernorm.weight": "model-00013-of-00015.safetensors",
"model.layers.55.self_attn.k_proj.bias": "model-00013-of-00015.safetensors",
"model.layers.55.self_attn.k_proj.weight": "model-00013-of-00015.safetensors",
"model.layers.55.self_attn.o_proj.weight": "model-00013-of-00015.safetensors",
"model.layers.55.self_attn.q_proj.bias": "model-00013-of-00015.safetensors",
"model.layers.55.self_attn.q_proj.weight": "model-00013-of-00015.safetensors",
"model.layers.55.self_attn.v_proj.bias": "model-00013-of-00015.safetensors",
"model.layers.55.self_attn.v_proj.weight": "model-00013-of-00015.safetensors",
"model.layers.56.input_layernorm.weight": "model-00013-of-00015.safetensors",
"model.layers.56.mlp.down_proj.weight": "model-00013-of-00015.safetensors",
"model.layers.56.mlp.gate_proj.weight": "model-00013-of-00015.safetensors",
"model.layers.56.mlp.up_proj.weight": "model-00013-of-00015.safetensors",
"model.layers.56.post_attention_layernorm.weight": "model-00013-of-00015.safetensors",
"model.layers.56.self_attn.k_proj.bias": "model-00013-of-00015.safetensors",
"model.layers.56.self_attn.k_proj.weight": "model-00013-of-00015.safetensors",
"model.layers.56.self_attn.o_proj.weight": "model-00013-of-00015.safetensors",
"model.layers.56.self_attn.q_proj.bias": "model-00013-of-00015.safetensors",
"model.layers.56.self_attn.q_proj.weight": "model-00013-of-00015.safetensors",
"model.layers.56.self_attn.v_proj.bias": "model-00013-of-00015.safetensors",
"model.layers.56.self_attn.v_proj.weight": "model-00013-of-00015.safetensors",
"model.layers.57.input_layernorm.weight": "model-00014-of-00015.safetensors",
"model.layers.57.mlp.down_proj.weight": "model-00014-of-00015.safetensors",
"model.layers.57.mlp.gate_proj.weight": "model-00014-of-00015.safetensors",
"model.layers.57.mlp.up_proj.weight": "model-00014-of-00015.safetensors",
"model.layers.57.post_attention_layernorm.weight": "model-00014-of-00015.safetensors",
"model.layers.57.self_attn.k_proj.bias": "model-00013-of-00015.safetensors",
"model.layers.57.self_attn.k_proj.weight": "model-00013-of-00015.safetensors",
"model.layers.57.self_attn.o_proj.weight": "model-00013-of-00015.safetensors",
"model.layers.57.self_attn.q_proj.bias": "model-00013-of-00015.safetensors",
"model.layers.57.self_attn.q_proj.weight": "model-00013-of-00015.safetensors",
"model.layers.57.self_attn.v_proj.bias": "model-00013-of-00015.safetensors",
"model.layers.57.self_attn.v_proj.weight": "model-00013-of-00015.safetensors",
"model.layers.58.input_layernorm.weight": "model-00014-of-00015.safetensors",
"model.layers.58.mlp.down_proj.weight": "model-00014-of-00015.safetensors",
"model.layers.58.mlp.gate_proj.weight": "model-00014-of-00015.safetensors",
"model.layers.58.mlp.up_proj.weight": "model-00014-of-00015.safetensors",
"model.layers.58.post_attention_layernorm.weight": "model-00014-of-00015.safetensors",
"model.layers.58.self_attn.k_proj.bias": "model-00014-of-00015.safetensors",
"model.layers.58.self_attn.k_proj.weight": "model-00014-of-00015.safetensors",
"model.layers.58.self_attn.o_proj.weight": "model-00014-of-00015.safetensors",
"model.layers.58.self_attn.q_proj.bias": "model-00014-of-00015.safetensors",
"model.layers.58.self_attn.q_proj.weight": "model-00014-of-00015.safetensors",
"model.layers.58.self_attn.v_proj.bias": "model-00014-of-00015.safetensors",
"model.layers.58.self_attn.v_proj.weight": "model-00014-of-00015.safetensors",
"model.layers.59.input_layernorm.weight": "model-00014-of-00015.safetensors",
"model.layers.59.mlp.down_proj.weight": "model-00014-of-00015.safetensors",
"model.layers.59.mlp.gate_proj.weight": "model-00014-of-00015.safetensors",
"model.layers.59.mlp.up_proj.weight": "model-00014-of-00015.safetensors",
"model.layers.59.post_attention_layernorm.weight": "model-00014-of-00015.safetensors",
"model.layers.59.self_attn.k_proj.bias": "model-00014-of-00015.safetensors",
"model.layers.59.self_attn.k_proj.weight": "model-00014-of-00015.safetensors",
"model.layers.59.self_attn.o_proj.weight": "model-00014-of-00015.safetensors",
"model.layers.59.self_attn.q_proj.bias": "model-00014-of-00015.safetensors",
"model.layers.59.self_attn.q_proj.weight": "model-00014-of-00015.safetensors",
"model.layers.59.self_attn.v_proj.bias": "model-00014-of-00015.safetensors",
"model.layers.59.self_attn.v_proj.weight": "model-00014-of-00015.safetensors",
"model.layers.6.input_layernorm.weight": "model-00002-of-00015.safetensors",
"model.layers.6.mlp.down_proj.weight": "model-00002-of-00015.safetensors",
"model.layers.6.mlp.gate_proj.weight": "model-00002-of-00015.safetensors",
"model.layers.6.mlp.up_proj.weight": "model-00002-of-00015.safetensors",
"model.layers.6.post_attention_layernorm.weight": "model-00002-of-00015.safetensors",
"model.layers.6.self_attn.k_proj.bias": "model-00002-of-00015.safetensors",
"model.layers.6.self_attn.k_proj.weight": "model-00002-of-00015.safetensors",
"model.layers.6.self_attn.o_proj.weight": "model-00002-of-00015.safetensors",
"model.layers.6.self_attn.q_proj.bias": "model-00002-of-00015.safetensors",
"model.layers.6.self_attn.q_proj.weight": "model-00002-of-00015.safetensors",
"model.layers.6.self_attn.v_proj.bias": "model-00002-of-00015.safetensors",
"model.layers.6.self_attn.v_proj.weight": "model-00002-of-00015.safetensors",
"model.layers.60.input_layernorm.weight": "model-00014-of-00015.safetensors",
"model.layers.60.mlp.down_proj.weight": "model-00014-of-00015.safetensors",
"model.layers.60.mlp.gate_proj.weight": "model-00014-of-00015.safetensors",
"model.layers.60.mlp.up_proj.weight": "model-00014-of-00015.safetensors",
"model.layers.60.post_attention_layernorm.weight": "model-00014-of-00015.safetensors",
"model.layers.60.self_attn.k_proj.bias": "model-00014-of-00015.safetensors",
"model.layers.60.self_attn.k_proj.weight": "model-00014-of-00015.safetensors",
"model.layers.60.self_attn.o_proj.weight": "model-00014-of-00015.safetensors",
"model.layers.60.self_attn.q_proj.bias": "model-00014-of-00015.safetensors",
"model.layers.60.self_attn.q_proj.weight": "model-00014-of-00015.safetensors",
"model.layers.60.self_attn.v_proj.bias": "model-00014-of-00015.safetensors",
"model.layers.60.self_attn.v_proj.weight": "model-00014-of-00015.safetensors",
"model.layers.61.input_layernorm.weight": "model-00015-of-00015.safetensors",
"model.layers.61.mlp.down_proj.weight": "model-00015-of-00015.safetensors",
"model.layers.61.mlp.gate_proj.weight": "model-00014-of-00015.safetensors",
"model.layers.61.mlp.up_proj.weight": "model-00014-of-00015.safetensors",
"model.layers.61.post_attention_layernorm.weight": "model-00015-of-00015.safetensors",
"model.layers.61.self_attn.k_proj.bias": "model-00014-of-00015.safetensors",
"model.layers.61.self_attn.k_proj.weight": "model-00014-of-00015.safetensors",
"model.layers.61.self_attn.o_proj.weight": "model-00014-of-00015.safetensors",
"model.layers.61.self_attn.q_proj.bias": "model-00014-of-00015.safetensors",
"model.layers.61.self_attn.q_proj.weight": "model-00014-of-00015.safetensors",
"model.layers.61.self_attn.v_proj.bias": "model-00014-of-00015.safetensors",
"model.layers.61.self_attn.v_proj.weight": "model-00014-of-00015.safetensors",
"model.layers.62.input_layernorm.weight": "model-00015-of-00015.safetensors",
"model.layers.62.mlp.down_proj.weight": "model-00015-of-00015.safetensors",
"model.layers.62.mlp.gate_proj.weight": "model-00015-of-00015.safetensors",
"model.layers.62.mlp.up_proj.weight": "model-00015-of-00015.safetensors",
"model.layers.62.post_attention_layernorm.weight": "model-00015-of-00015.safetensors",
"model.layers.62.self_attn.k_proj.bias": "model-00015-of-00015.safetensors",
"model.layers.62.self_attn.k_proj.weight": "model-00015-of-00015.safetensors",
"model.layers.62.self_attn.o_proj.weight": "model-00015-of-00015.safetensors",
"model.layers.62.self_attn.q_proj.bias": "model-00015-of-00015.safetensors",
"model.layers.62.self_attn.q_proj.weight": "model-00015-of-00015.safetensors",
"model.layers.62.self_attn.v_proj.bias": "model-00015-of-00015.safetensors",
"model.layers.62.self_attn.v_proj.weight": "model-00015-of-00015.safetensors",
"model.layers.63.input_layernorm.weight": "model-00015-of-00015.safetensors",
"model.layers.63.mlp.down_proj.weight": "model-00015-of-00015.safetensors",
"model.layers.63.mlp.gate_proj.weight": "model-00015-of-00015.safetensors",
"model.layers.63.mlp.up_proj.weight": "model-00015-of-00015.safetensors",
"model.layers.63.post_attention_layernorm.weight": "model-00015-of-00015.safetensors",
"model.layers.63.self_attn.k_proj.bias": "model-00015-of-00015.safetensors",
"model.layers.63.self_attn.k_proj.weight": "model-00015-of-00015.safetensors",
"model.layers.63.self_attn.o_proj.weight": "model-00015-of-00015.safetensors",
"model.layers.63.self_attn.q_proj.bias": "model-00015-of-00015.safetensors",
"model.layers.63.self_attn.q_proj.weight": "model-00015-of-00015.safetensors",
"model.layers.63.self_attn.v_proj.bias": "model-00015-of-00015.safetensors",
"model.layers.63.self_attn.v_proj.weight": "model-00015-of-00015.safetensors",
"model.layers.7.input_layernorm.weight": "model-00003-of-00015.safetensors",
"model.layers.7.mlp.down_proj.weight": "model-00003-of-00015.safetensors",
"model.layers.7.mlp.gate_proj.weight": "model-00002-of-00015.safetensors",
"model.layers.7.mlp.up_proj.weight": "model-00002-of-00015.safetensors",
"model.layers.7.post_attention_layernorm.weight": "model-00003-of-00015.safetensors",
"model.layers.7.self_attn.k_proj.bias": "model-00002-of-00015.safetensors",
"model.layers.7.self_attn.k_proj.weight": "model-00002-of-00015.safetensors",
"model.layers.7.self_attn.o_proj.weight": "model-00002-of-00015.safetensors",
"model.layers.7.self_attn.q_proj.bias": "model-00002-of-00015.safetensors",
"model.layers.7.self_attn.q_proj.weight": "model-00002-of-00015.safetensors",
"model.layers.7.self_attn.v_proj.bias": "model-00002-of-00015.safetensors",
"model.layers.7.self_attn.v_proj.weight": "model-00002-of-00015.safetensors",
"model.layers.8.input_layernorm.weight": "model-00003-of-00015.safetensors",
"model.layers.8.mlp.down_proj.weight": "model-00003-of-00015.safetensors",
"model.layers.8.mlp.gate_proj.weight": "model-00003-of-00015.safetensors",
"model.layers.8.mlp.up_proj.weight": "model-00003-of-00015.safetensors",
"model.layers.8.post_attention_layernorm.weight": "model-00003-of-00015.safetensors",
"model.layers.8.self_attn.k_proj.bias": "model-00003-of-00015.safetensors",
"model.layers.8.self_attn.k_proj.weight": "model-00003-of-00015.safetensors",
"model.layers.8.self_attn.o_proj.weight": "model-00003-of-00015.safetensors",
"model.layers.8.self_attn.q_proj.bias": "model-00003-of-00015.safetensors",
"model.layers.8.self_attn.q_proj.weight": "model-00003-of-00015.safetensors",
"model.layers.8.self_attn.v_proj.bias": "model-00003-of-00015.safetensors",
"model.layers.8.self_attn.v_proj.weight": "model-00003-of-00015.safetensors",
"model.layers.9.input_layernorm.weight": "model-00003-of-00015.safetensors",
"model.layers.9.mlp.down_proj.weight": "model-00003-of-00015.safetensors",
"model.layers.9.mlp.gate_proj.weight": "model-00003-of-00015.safetensors",
"model.layers.9.mlp.up_proj.weight": "model-00003-of-00015.safetensors",
"model.layers.9.post_attention_layernorm.weight": "model-00003-of-00015.safetensors",
"model.layers.9.self_attn.k_proj.bias": "model-00003-of-00015.safetensors",
"model.layers.9.self_attn.k_proj.weight": "model-00003-of-00015.safetensors",
"model.layers.9.self_attn.o_proj.weight": "model-00003-of-00015.safetensors",
"model.layers.9.self_attn.q_proj.bias": "model-00003-of-00015.safetensors",
"model.layers.9.self_attn.q_proj.weight": "model-00003-of-00015.safetensors",
"model.layers.9.self_attn.v_proj.bias": "model-00003-of-00015.safetensors",
"model.layers.9.self_attn.v_proj.weight": "model-00003-of-00015.safetensors",
"model.norm.weight": "model-00015-of-00015.safetensors"
}
}

23
special_tokens_map.json Normal file
View File

@ -0,0 +1,23 @@
{
"bos_token": {
"content": "<seed:bos>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
"eos_token": {
"content": "<seed:eos>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
"pad_token": {
"content": "<seed:pad>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
}
}

BIN
thinking_budget.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 186 KiB

BIN
tokenizer.json (Stored with Git LFS) Normal file

Binary file not shown.

1035
tokenizer_config.json Normal file

File diff suppressed because it is too large Load Diff