62 lines
		
	
	
		
			2.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
		
		
			
		
	
	
			62 lines
		
	
	
		
			2.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| 
								 | 
							
								from opencompass.openicl.icl_prompt_template import PromptTemplate
							 | 
						||
| 
								 | 
							
								from opencompass.openicl.icl_retriever import ZeroRetriever, FixKRetriever
							 | 
						||
| 
								 | 
							
								from opencompass.openicl.icl_inferencer import GenInferencer
							 | 
						||
| 
								 | 
							
								from opencompass.datasets import NaturalQuestionDataset, NQEvaluator
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								nq_datasets = []
							 | 
						||
| 
								 | 
							
								for k in [0, 1, 5]:
							 | 
						||
| 
								 | 
							
								    nq_reader_cfg = dict(
							 | 
						||
| 
								 | 
							
								        input_columns=['question'], output_column='answer', train_split='dev')
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    if k == 0:
							 | 
						||
| 
								 | 
							
								        nq_infer_cfg = dict(
							 | 
						||
| 
								 | 
							
								            prompt_template=dict(
							 | 
						||
| 
								 | 
							
								                type=PromptTemplate,
							 | 
						||
| 
								 | 
							
								                template=dict(
							 | 
						||
| 
								 | 
							
								                    round=[
							 | 
						||
| 
								 | 
							
								                        dict(role='HUMAN', prompt='Answer these questions, your answer should be as simple as possible, start your answer with the prompt \'The answer is \'.\nQ: {question}?'),
							 | 
						||
| 
								 | 
							
								                        dict(role='BOT', prompt='A:'),
							 | 
						||
| 
								 | 
							
								                    ]
							 | 
						||
| 
								 | 
							
								                )
							 | 
						||
| 
								 | 
							
								            ),
							 | 
						||
| 
								 | 
							
								            retriever=dict(type=ZeroRetriever),
							 | 
						||
| 
								 | 
							
								            inferencer=dict(type=GenInferencer, max_out_len=50)
							 | 
						||
| 
								 | 
							
								        )
							 | 
						||
| 
								 | 
							
								    else:
							 | 
						||
| 
								 | 
							
								        nq_infer_cfg = dict(
							 | 
						||
| 
								 | 
							
								            ice_template=dict(
							 | 
						||
| 
								 | 
							
								                type=PromptTemplate,
							 | 
						||
| 
								 | 
							
								                template=dict(
							 | 
						||
| 
								 | 
							
								                    round=[
							 | 
						||
| 
								 | 
							
								                        dict(role='HUMAN', prompt='Answer the question, your answer should be as simple as possible, start your answer with the prompt \'The answer is \'.\nQ: {question}?'),
							 | 
						||
| 
								 | 
							
								                        dict(role='BOT', prompt='A: The answer is {answer}.\n'),
							 | 
						||
| 
								 | 
							
								                    ]
							 | 
						||
| 
								 | 
							
								                ),
							 | 
						||
| 
								 | 
							
								            ),
							 | 
						||
| 
								 | 
							
								            prompt_template=dict(
							 | 
						||
| 
								 | 
							
								                type=PromptTemplate,
							 | 
						||
| 
								 | 
							
								                template=dict(
							 | 
						||
| 
								 | 
							
								                    begin="</E>",
							 | 
						||
| 
								 | 
							
								                    round=[
							 | 
						||
| 
								 | 
							
								                        dict(role='HUMAN', prompt='Answer the question, your answer should be as simple as possible, start your answer with the prompt \'The answer is \'.\nQ: {question}?'),
							 | 
						||
| 
								 | 
							
								                        dict(role='BOT', prompt='A:'),
							 | 
						||
| 
								 | 
							
								                    ]
							 | 
						||
| 
								 | 
							
								                ),
							 | 
						||
| 
								 | 
							
								                ice_token="</E>",
							 | 
						||
| 
								 | 
							
								            ),
							 | 
						||
| 
								 | 
							
								            retriever=dict(type=FixKRetriever),
							 | 
						||
| 
								 | 
							
								            inferencer=dict(type=GenInferencer, max_out_len=50, fix_id_list=list(range(k))),
							 | 
						||
| 
								 | 
							
								        )
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    nq_eval_cfg = dict(evaluator=dict(type=NQEvaluator), pred_role="BOT")
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    nq_datasets.append(
							 | 
						||
| 
								 | 
							
								        dict(
							 | 
						||
| 
								 | 
							
								            type=NaturalQuestionDataset,
							 | 
						||
| 
								 | 
							
								            abbr='nq' if k == 0 else f'nq_{k}shot',
							 | 
						||
| 
								 | 
							
								            path='./data/nq/',
							 | 
						||
| 
								 | 
							
								            reader_cfg=nq_reader_cfg,
							 | 
						||
| 
								 | 
							
								            infer_cfg=nq_infer_cfg,
							 | 
						||
| 
								 | 
							
								            eval_cfg=nq_eval_cfg)
							 | 
						||
| 
								 | 
							
								    )
							 |