62 lines
		
	
	
		
			2.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			62 lines
		
	
	
		
			2.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
from opencompass.openicl.icl_prompt_template import PromptTemplate
 | 
						|
from opencompass.openicl.icl_retriever import ZeroRetriever, FixKRetriever
 | 
						|
from opencompass.openicl.icl_inferencer import GenInferencer
 | 
						|
from opencompass.datasets import NaturalQuestionDataset, NQEvaluator
 | 
						|
 | 
						|
nq_datasets = []
 | 
						|
for k in [0, 1, 5]:
 | 
						|
    nq_reader_cfg = dict(
 | 
						|
        input_columns=['question'], output_column='answer', train_split='dev')
 | 
						|
 | 
						|
    if k == 0:
 | 
						|
        nq_infer_cfg = dict(
 | 
						|
            prompt_template=dict(
 | 
						|
                type=PromptTemplate,
 | 
						|
                template=dict(
 | 
						|
                    round=[
 | 
						|
                        dict(role='HUMAN', prompt='Answer these questions, your answer should be as simple as possible, start your answer with the prompt \'The answer is \'.\nQ: {question}?'),
 | 
						|
                        dict(role='BOT', prompt='A:'),
 | 
						|
                    ]
 | 
						|
                )
 | 
						|
            ),
 | 
						|
            retriever=dict(type=ZeroRetriever),
 | 
						|
            inferencer=dict(type=GenInferencer, max_out_len=50)
 | 
						|
        )
 | 
						|
    else:
 | 
						|
        nq_infer_cfg = dict(
 | 
						|
            ice_template=dict(
 | 
						|
                type=PromptTemplate,
 | 
						|
                template=dict(
 | 
						|
                    round=[
 | 
						|
                        dict(role='HUMAN', prompt='Answer the question, your answer should be as simple as possible, start your answer with the prompt \'The answer is \'.\nQ: {question}?'),
 | 
						|
                        dict(role='BOT', prompt='A: The answer is {answer}.\n'),
 | 
						|
                    ]
 | 
						|
                ),
 | 
						|
            ),
 | 
						|
            prompt_template=dict(
 | 
						|
                type=PromptTemplate,
 | 
						|
                template=dict(
 | 
						|
                    begin="</E>",
 | 
						|
                    round=[
 | 
						|
                        dict(role='HUMAN', prompt='Answer the question, your answer should be as simple as possible, start your answer with the prompt \'The answer is \'.\nQ: {question}?'),
 | 
						|
                        dict(role='BOT', prompt='A:'),
 | 
						|
                    ]
 | 
						|
                ),
 | 
						|
                ice_token="</E>",
 | 
						|
            ),
 | 
						|
            retriever=dict(type=FixKRetriever),
 | 
						|
            inferencer=dict(type=GenInferencer, max_out_len=50, fix_id_list=list(range(k))),
 | 
						|
        )
 | 
						|
 | 
						|
    nq_eval_cfg = dict(evaluator=dict(type=NQEvaluator), pred_role="BOT")
 | 
						|
 | 
						|
    nq_datasets.append(
 | 
						|
        dict(
 | 
						|
            type=NaturalQuestionDataset,
 | 
						|
            abbr='nq' if k == 0 else f'nq_{k}shot',
 | 
						|
            path='./data/nq/',
 | 
						|
            reader_cfg=nq_reader_cfg,
 | 
						|
            infer_cfg=nq_infer_cfg,
 | 
						|
            eval_cfg=nq_eval_cfg)
 | 
						|
    )
 |