112 lines
		
	
	
		
			3.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
		
		
			
		
	
	
			112 lines
		
	
	
		
			3.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| 
								 | 
							
								import random
							 | 
						||
| 
								 | 
							
								import re
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								import torch
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class InstructBlipMMBenchPostProcessor:
							 | 
						||
| 
								 | 
							
								    """"Post processor for MiniGPT-4 on MMBench."""
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def __init__(self) -> None:
							 | 
						||
| 
								 | 
							
								        pass
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def __call__(self, output_token: torch.tensor, tokenizer) -> str:
							 | 
						||
| 
								 | 
							
								        # convert output id 0 to 2 (eos_token_id)
							 | 
						||
| 
								 | 
							
								        output_token[output_token == 0] = 2
							 | 
						||
| 
								 | 
							
								        output_text = tokenizer.decode(output_token,
							 | 
						||
| 
								 | 
							
								                                       add_special_tokens=False)  # noqa
							 | 
						||
| 
								 | 
							
								        output_text = self._extract_key_words(output_text.strip())
							 | 
						||
| 
								 | 
							
								        return output_text
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def _extract_key_words(self, output_text: str) -> str:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        output_text = output_text.split('###')[0]
							 | 
						||
| 
								 | 
							
								        output_text = output_text.split('Assistant:')[-1].strip()
							 | 
						||
| 
								 | 
							
								        output_text = output_text.strip('</s><s>')
							 | 
						||
| 
								 | 
							
								        output_text = output_text.strip('</Img>')
							 | 
						||
| 
								 | 
							
								        output_text = output_text.strip()
							 | 
						||
| 
								 | 
							
								        pattern = re.compile(r'([A-Z]\.)')
							 | 
						||
| 
								 | 
							
								        res = pattern.findall(output_text)
							 | 
						||
| 
								 | 
							
								        if len(res) > 0:
							 | 
						||
| 
								 | 
							
								            output_text = res[0][:-1]
							 | 
						||
| 
								 | 
							
								        return output_text
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class InstructBlipCOCOCaptionPostProcessor:
							 | 
						||
| 
								 | 
							
								    """"Post processor for InstructBlip on COCO Caption."""
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def __init__(self) -> None:
							 | 
						||
| 
								 | 
							
								        pass
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def __call__(self, output_token: torch.tensor, tokenizer) -> str:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        output_token[output_token == 0] = 2
							 | 
						||
| 
								 | 
							
								        output_text = tokenizer.decode(output_token,
							 | 
						||
| 
								 | 
							
								                                       add_special_tokens=False)  # noqa
							 | 
						||
| 
								 | 
							
								        output_text = output_text.split('###')[0]
							 | 
						||
| 
								 | 
							
								        output_text = output_text.split('Assistant:')[-1].strip()
							 | 
						||
| 
								 | 
							
								        output_text = output_text.strip('</s><s>')
							 | 
						||
| 
								 | 
							
								        output_text = output_text.strip('</Img>')
							 | 
						||
| 
								 | 
							
								        output_text = output_text.strip()
							 | 
						||
| 
								 | 
							
								        return output_text
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class InstructBlipVQAPostProcessor:
							 | 
						||
| 
								 | 
							
								    """"Post processor for InstructBlip on VQA."""
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def __init__(self) -> None:
							 | 
						||
| 
								 | 
							
								        pass
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def __call__(self, output_token: torch.tensor, tokenizer) -> str:
							 | 
						||
| 
								 | 
							
								        output_token[output_token == 0] = 2
							 | 
						||
| 
								 | 
							
								        output_text = tokenizer.decode(output_token,
							 | 
						||
| 
								 | 
							
								                                       add_special_tokens=False)  # noqa
							 | 
						||
| 
								 | 
							
								        output_text = output_text.split('###')[0]
							 | 
						||
| 
								 | 
							
								        output_text = output_text.split('Assistant:')[-1].strip()
							 | 
						||
| 
								 | 
							
								        output_text = output_text.strip('</s><s>')
							 | 
						||
| 
								 | 
							
								        output_text = output_text.strip('</Img>')
							 | 
						||
| 
								 | 
							
								        output_text = output_text.strip()
							 | 
						||
| 
								 | 
							
								        return output_text
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class InstructBlipScienceQAPostProcessor:
							 | 
						||
| 
								 | 
							
								    """"Post processor for InstructBlip on ScienceQA."""
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def __init__(self) -> None:
							 | 
						||
| 
								 | 
							
								        pass
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def __call__(self, output_token: torch.tensor, tokenizer) -> str:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        output_token[output_token == 0] = 2
							 | 
						||
| 
								 | 
							
								        output_text = tokenizer.decode(output_token,
							 | 
						||
| 
								 | 
							
								                                       add_special_tokens=False)  # noqa
							 | 
						||
| 
								 | 
							
								        output_text = output_text.split('###')[0]
							 | 
						||
| 
								 | 
							
								        output_text = output_text.split('Assistant:')[-1].strip()
							 | 
						||
| 
								 | 
							
								        output_text = output_text.strip('</s><s>')
							 | 
						||
| 
								 | 
							
								        output_text = output_text.strip('</Img>')
							 | 
						||
| 
								 | 
							
								        output_text = output_text.strip()
							 | 
						||
| 
								 | 
							
								        pattern = re.compile(r'\(([A-Z])\)')
							 | 
						||
| 
								 | 
							
								        output_text = pattern.findall(output_text)
							 | 
						||
| 
								 | 
							
								        if len(output_text) == 0:
							 | 
						||
| 
								 | 
							
								            output_text = random.choice(['A', 'B', 'C', 'D'])
							 | 
						||
| 
								 | 
							
								        else:
							 | 
						||
| 
								 | 
							
								            output_text = output_text[0]
							 | 
						||
| 
								 | 
							
								        return output_text
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class InstructBlipVSRPostProcessor:
							 | 
						||
| 
								 | 
							
								    """"Post processor for InstructBlip on VSR."""
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def __init__(self) -> None:
							 | 
						||
| 
								 | 
							
								        pass
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def __call__(self, output_token: torch.tensor, tokenizer) -> str:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        output_token[output_token == 0] = 2
							 | 
						||
| 
								 | 
							
								        output_text = tokenizer.decode(output_token, add_special_tokens=False)
							 | 
						||
| 
								 | 
							
								        pattern = r'yes|no|Yes|No'
							 | 
						||
| 
								 | 
							
								        output_text = re.findall(pattern, output_text)
							 | 
						||
| 
								 | 
							
								        if len(output_text) > 0:
							 | 
						||
| 
								 | 
							
								            output_text = output_text[0].lower()
							 | 
						||
| 
								 | 
							
								        return output_text
							 |