112 lines
		
	
	
		
			3.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			112 lines
		
	
	
		
			3.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import random
 | 
						|
import re
 | 
						|
 | 
						|
import torch
 | 
						|
 | 
						|
 | 
						|
class InstructBlipMMBenchPostProcessor:
 | 
						|
    """"Post processor for MiniGPT-4 on MMBench."""
 | 
						|
 | 
						|
    def __init__(self) -> None:
 | 
						|
        pass
 | 
						|
 | 
						|
    def __call__(self, output_token: torch.tensor, tokenizer) -> str:
 | 
						|
        # convert output id 0 to 2 (eos_token_id)
 | 
						|
        output_token[output_token == 0] = 2
 | 
						|
        output_text = tokenizer.decode(output_token,
 | 
						|
                                       add_special_tokens=False)  # noqa
 | 
						|
        output_text = self._extract_key_words(output_text.strip())
 | 
						|
        return output_text
 | 
						|
 | 
						|
    def _extract_key_words(self, output_text: str) -> str:
 | 
						|
 | 
						|
        output_text = output_text.split('###')[0]
 | 
						|
        output_text = output_text.split('Assistant:')[-1].strip()
 | 
						|
        output_text = output_text.strip('</s><s>')
 | 
						|
        output_text = output_text.strip('</Img>')
 | 
						|
        output_text = output_text.strip()
 | 
						|
        pattern = re.compile(r'([A-Z]\.)')
 | 
						|
        res = pattern.findall(output_text)
 | 
						|
        if len(res) > 0:
 | 
						|
            output_text = res[0][:-1]
 | 
						|
        return output_text
 | 
						|
 | 
						|
 | 
						|
class InstructBlipCOCOCaptionPostProcessor:
 | 
						|
    """"Post processor for InstructBlip on COCO Caption."""
 | 
						|
 | 
						|
    def __init__(self) -> None:
 | 
						|
        pass
 | 
						|
 | 
						|
    def __call__(self, output_token: torch.tensor, tokenizer) -> str:
 | 
						|
 | 
						|
        output_token[output_token == 0] = 2
 | 
						|
        output_text = tokenizer.decode(output_token,
 | 
						|
                                       add_special_tokens=False)  # noqa
 | 
						|
        output_text = output_text.split('###')[0]
 | 
						|
        output_text = output_text.split('Assistant:')[-1].strip()
 | 
						|
        output_text = output_text.strip('</s><s>')
 | 
						|
        output_text = output_text.strip('</Img>')
 | 
						|
        output_text = output_text.strip()
 | 
						|
        return output_text
 | 
						|
 | 
						|
 | 
						|
class InstructBlipVQAPostProcessor:
 | 
						|
    """"Post processor for InstructBlip on VQA."""
 | 
						|
 | 
						|
    def __init__(self) -> None:
 | 
						|
        pass
 | 
						|
 | 
						|
    def __call__(self, output_token: torch.tensor, tokenizer) -> str:
 | 
						|
        output_token[output_token == 0] = 2
 | 
						|
        output_text = tokenizer.decode(output_token,
 | 
						|
                                       add_special_tokens=False)  # noqa
 | 
						|
        output_text = output_text.split('###')[0]
 | 
						|
        output_text = output_text.split('Assistant:')[-1].strip()
 | 
						|
        output_text = output_text.strip('</s><s>')
 | 
						|
        output_text = output_text.strip('</Img>')
 | 
						|
        output_text = output_text.strip()
 | 
						|
        return output_text
 | 
						|
 | 
						|
 | 
						|
class InstructBlipScienceQAPostProcessor:
 | 
						|
    """"Post processor for InstructBlip on ScienceQA."""
 | 
						|
 | 
						|
    def __init__(self) -> None:
 | 
						|
        pass
 | 
						|
 | 
						|
    def __call__(self, output_token: torch.tensor, tokenizer) -> str:
 | 
						|
 | 
						|
        output_token[output_token == 0] = 2
 | 
						|
        output_text = tokenizer.decode(output_token,
 | 
						|
                                       add_special_tokens=False)  # noqa
 | 
						|
        output_text = output_text.split('###')[0]
 | 
						|
        output_text = output_text.split('Assistant:')[-1].strip()
 | 
						|
        output_text = output_text.strip('</s><s>')
 | 
						|
        output_text = output_text.strip('</Img>')
 | 
						|
        output_text = output_text.strip()
 | 
						|
        pattern = re.compile(r'\(([A-Z])\)')
 | 
						|
        output_text = pattern.findall(output_text)
 | 
						|
        if len(output_text) == 0:
 | 
						|
            output_text = random.choice(['A', 'B', 'C', 'D'])
 | 
						|
        else:
 | 
						|
            output_text = output_text[0]
 | 
						|
        return output_text
 | 
						|
 | 
						|
 | 
						|
class InstructBlipVSRPostProcessor:
 | 
						|
    """"Post processor for InstructBlip on VSR."""
 | 
						|
 | 
						|
    def __init__(self) -> None:
 | 
						|
        pass
 | 
						|
 | 
						|
    def __call__(self, output_token: torch.tensor, tokenizer) -> str:
 | 
						|
 | 
						|
        output_token[output_token == 0] = 2
 | 
						|
        output_text = tokenizer.decode(output_token, add_special_tokens=False)
 | 
						|
        pattern = r'yes|no|Yes|No'
 | 
						|
        output_text = re.findall(pattern, output_text)
 | 
						|
        if len(output_text) > 0:
 | 
						|
            output_text = output_text[0].lower()
 | 
						|
        return output_text
 |