294 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
		
		
			
		
	
	
			294 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| 
								 | 
							
								# Copyright (c) Alibaba Cloud.
							 | 
						||
| 
								 | 
							
								#
							 | 
						||
| 
								 | 
							
								# This source code is licensed under the license found in the
							 | 
						||
| 
								 | 
							
								# LICENSE file in the root directory of this source tree.
							 | 
						||
| 
								 | 
							
								"""Generation support."""
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								from typing import List, Tuple, Union
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								import torch
							 | 
						||
| 
								 | 
							
								from transformers import PreTrainedTokenizer
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								# Types.
							 | 
						||
| 
								 | 
							
								HistoryType = List[Tuple[str, str]]
							 | 
						||
| 
								 | 
							
								TokensType = List[int]
							 | 
						||
| 
								 | 
							
								BatchTokensType = List[List[int]]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def pad_batch(batch: BatchTokensType, pad_id: int,
							 | 
						||
| 
								 | 
							
								              seq_length: int) -> BatchTokensType:
							 | 
						||
| 
								 | 
							
								    for tokens in batch:
							 | 
						||
| 
								 | 
							
								        context_length = len(tokens)
							 | 
						||
| 
								 | 
							
								        if context_length < seq_length:
							 | 
						||
| 
								 | 
							
								            tokens.extend([pad_id] * (seq_length - context_length))
							 | 
						||
| 
								 | 
							
								    return batch
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def get_ltor_masks_and_position_ids(
							 | 
						||
| 
								 | 
							
								    data: torch.Tensor,
							 | 
						||
| 
								 | 
							
								    eod_token: int,
							 | 
						||
| 
								 | 
							
								    reset_position_ids: bool,
							 | 
						||
| 
								 | 
							
								    reset_attention_mask: bool,
							 | 
						||
| 
								 | 
							
								    eod_mask_loss: bool,
							 | 
						||
| 
								 | 
							
								):
							 | 
						||
| 
								 | 
							
								    """Build masks and position id for left to right model."""
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    # Extract batch size and sequence length.
							 | 
						||
| 
								 | 
							
								    micro_batch_size, seq_length = data.size()
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    # Attention mask (lower triangular).
							 | 
						||
| 
								 | 
							
								    if reset_attention_mask:
							 | 
						||
| 
								 | 
							
								        att_mask_batch = micro_batch_size
							 | 
						||
| 
								 | 
							
								    else:
							 | 
						||
| 
								 | 
							
								        att_mask_batch = 1
							 | 
						||
| 
								 | 
							
								    attention_mask = torch.tril(
							 | 
						||
| 
								 | 
							
								        torch.ones((att_mask_batch, seq_length, seq_length),
							 | 
						||
| 
								 | 
							
								                   device=data.device)).view(att_mask_batch, 1, seq_length,
							 | 
						||
| 
								 | 
							
								                                             seq_length)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    # Loss mask.
							 | 
						||
| 
								 | 
							
								    loss_mask = torch.ones(data.size(), dtype=torch.float, device=data.device)
							 | 
						||
| 
								 | 
							
								    if eod_mask_loss:
							 | 
						||
| 
								 | 
							
								        loss_mask[data == eod_token] = 0.0
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    # Position ids.
							 | 
						||
| 
								 | 
							
								    position_ids = torch.arange(seq_length,
							 | 
						||
| 
								 | 
							
								                                dtype=torch.long,
							 | 
						||
| 
								 | 
							
								                                device=data.device)
							 | 
						||
| 
								 | 
							
								    position_ids = position_ids.unsqueeze(0).expand_as(data)
							 | 
						||
| 
								 | 
							
								    # We need to clone as the ids will be modified based on batch index.
							 | 
						||
| 
								 | 
							
								    if reset_position_ids:
							 | 
						||
| 
								 | 
							
								        position_ids = position_ids.clone()
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    if reset_position_ids or reset_attention_mask:
							 | 
						||
| 
								 | 
							
								        # Loop through the batches:
							 | 
						||
| 
								 | 
							
								        for b in range(micro_batch_size):
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            # Find indices where EOD token is.
							 | 
						||
| 
								 | 
							
								            eod_index = position_ids[b, data[b] == eod_token]
							 | 
						||
| 
								 | 
							
								            # Detach indices from positions if going to modify positions.
							 | 
						||
| 
								 | 
							
								            if reset_position_ids:
							 | 
						||
| 
								 | 
							
								                eod_index = eod_index.clone()
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            # Loop through EOD indices:
							 | 
						||
| 
								 | 
							
								            prev_index = 0
							 | 
						||
| 
								 | 
							
								            for j in range(eod_index.size()[0]):
							 | 
						||
| 
								 | 
							
								                i = eod_index[j]
							 | 
						||
| 
								 | 
							
								                # Mask attention loss.
							 | 
						||
| 
								 | 
							
								                if reset_attention_mask:
							 | 
						||
| 
								 | 
							
								                    attention_mask[b, 0, (i + 1):, :(i + 1)] = 0
							 | 
						||
| 
								 | 
							
								                # Reset positions.
							 | 
						||
| 
								 | 
							
								                if reset_position_ids:
							 | 
						||
| 
								 | 
							
								                    position_ids[b, (i + 1):] -= i + 1 - prev_index
							 | 
						||
| 
								 | 
							
								                    prev_index = i + 1
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    # Convert attention mask to binary:
							 | 
						||
| 
								 | 
							
								    attention_mask = attention_mask < 0.5
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    return attention_mask, loss_mask, position_ids
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def get_batch(context_tokens: torch.LongTensor, eod_id: int):
							 | 
						||
| 
								 | 
							
								    """Generate batch from context tokens."""
							 | 
						||
| 
								 | 
							
								    # Move to GPU.
							 | 
						||
| 
								 | 
							
								    tokens = context_tokens.contiguous().to(context_tokens.device)
							 | 
						||
| 
								 | 
							
								    # Get the attention mask and position ids.
							 | 
						||
| 
								 | 
							
								    attention_mask, _, position_ids = get_ltor_masks_and_position_ids(
							 | 
						||
| 
								 | 
							
								        tokens,
							 | 
						||
| 
								 | 
							
								        eod_id,
							 | 
						||
| 
								 | 
							
								        reset_position_ids=False,
							 | 
						||
| 
								 | 
							
								        reset_attention_mask=False,
							 | 
						||
| 
								 | 
							
								        eod_mask_loss=False,
							 | 
						||
| 
								 | 
							
								    )
							 | 
						||
| 
								 | 
							
								    return tokens, attention_mask, position_ids
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def get_stop_words_ids(chat_format: str, tokenizer: PreTrainedTokenizer):
							 | 
						||
| 
								 | 
							
								    if chat_format == 'raw':
							 | 
						||
| 
								 | 
							
								        stop_words_ids = [tokenizer.encode('Human:'), [tokenizer.eod_id]]
							 | 
						||
| 
								 | 
							
								    elif chat_format == 'chatml':
							 | 
						||
| 
								 | 
							
								        stop_words_ids = [[tokenizer.im_end_id], [tokenizer.im_start_id]]
							 | 
						||
| 
								 | 
							
								    else:
							 | 
						||
| 
								 | 
							
								        raise NotImplementedError(f'Unknown chat format {chat_format!r}')
							 | 
						||
| 
								 | 
							
								    return stop_words_ids
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def make_context(
							 | 
						||
| 
								 | 
							
								    tokenizer: PreTrainedTokenizer,
							 | 
						||
| 
								 | 
							
								    query: str,
							 | 
						||
| 
								 | 
							
								    history: List[Tuple[str, str]] = None,
							 | 
						||
| 
								 | 
							
								    system: str = '',
							 | 
						||
| 
								 | 
							
								    max_window_size: int = 6144,
							 | 
						||
| 
								 | 
							
								    chat_format: str = 'chatml',
							 | 
						||
| 
								 | 
							
								):
							 | 
						||
| 
								 | 
							
								    if history is None:
							 | 
						||
| 
								 | 
							
								        history = []
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    if chat_format == 'chatml':
							 | 
						||
| 
								 | 
							
								        im_start, im_end = '<|im_start|>', '<|im_end|>'
							 | 
						||
| 
								 | 
							
								        im_start_tokens = [tokenizer.im_start_id]
							 | 
						||
| 
								 | 
							
								        im_end_tokens = [tokenizer.im_end_id]
							 | 
						||
| 
								 | 
							
								        nl_tokens = tokenizer.encode('\n')
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        def _tokenize_str(role, content):
							 | 
						||
| 
								 | 
							
								            return f'{role}\n{content}', tokenizer.encode(
							 | 
						||
| 
								 | 
							
								                role, allowed_special=set(
							 | 
						||
| 
								 | 
							
								                    tokenizer.IMAGE_ST)) + nl_tokens + tokenizer.encode(
							 | 
						||
| 
								 | 
							
								                        content, allowed_special=set(tokenizer.IMAGE_ST))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        system_text, system_tokens_part = _tokenize_str('system', system)
							 | 
						||
| 
								 | 
							
								        system_tokens = im_start_tokens + system_tokens_part + im_end_tokens
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        raw_text = ''
							 | 
						||
| 
								 | 
							
								        context_tokens = []
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        for turn_query, turn_response in reversed(history):
							 | 
						||
| 
								 | 
							
								            query_text, query_tokens_part = _tokenize_str('user', turn_query)
							 | 
						||
| 
								 | 
							
								            query_tokens = im_start_tokens + query_tokens_part + im_end_tokens
							 | 
						||
| 
								 | 
							
								            if turn_response is not None:
							 | 
						||
| 
								 | 
							
								                response_text, response_tokens_part = _tokenize_str(
							 | 
						||
| 
								 | 
							
								                    'assistant', turn_response)
							 | 
						||
| 
								 | 
							
								                response_tokens = im_start_tokens + response_tokens_part + im_end_tokens  # noqa
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								                next_context_tokens = nl_tokens + query_tokens + nl_tokens + response_tokens  # noqa
							 | 
						||
| 
								 | 
							
								                prev_chat = (
							 | 
						||
| 
								 | 
							
								                    f'\n{im_start}{query_text}{im_end}\n{im_start}{response_text}{im_end}'  # noqa
							 | 
						||
| 
								 | 
							
								                )
							 | 
						||
| 
								 | 
							
								            else:
							 | 
						||
| 
								 | 
							
								                next_context_tokens = nl_tokens + query_tokens + nl_tokens
							 | 
						||
| 
								 | 
							
								                prev_chat = f'\n{im_start}{query_text}{im_end}\n'
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            current_context_size = (len(system_tokens) +
							 | 
						||
| 
								 | 
							
								                                    len(next_context_tokens) +
							 | 
						||
| 
								 | 
							
								                                    len(context_tokens))
							 | 
						||
| 
								 | 
							
								            if current_context_size < max_window_size:
							 | 
						||
| 
								 | 
							
								                context_tokens = next_context_tokens + context_tokens
							 | 
						||
| 
								 | 
							
								                raw_text = prev_chat + raw_text
							 | 
						||
| 
								 | 
							
								            else:
							 | 
						||
| 
								 | 
							
								                break
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        context_tokens = system_tokens + context_tokens
							 | 
						||
| 
								 | 
							
								        raw_text = f'{im_start}{system_text}{im_end}' + raw_text
							 | 
						||
| 
								 | 
							
								        context_tokens += (nl_tokens + im_start_tokens +
							 | 
						||
| 
								 | 
							
								                           _tokenize_str('user', query)[1] + im_end_tokens +
							 | 
						||
| 
								 | 
							
								                           nl_tokens + im_start_tokens +
							 | 
						||
| 
								 | 
							
								                           tokenizer.encode('assistant') + nl_tokens)
							 | 
						||
| 
								 | 
							
								        raw_text += f'\n{im_start}user\n{query}{im_end}\n{im_start}assistant\n'
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    elif chat_format == 'raw':
							 | 
						||
| 
								 | 
							
								        raw_text = query
							 | 
						||
| 
								 | 
							
								        context_tokens = tokenizer.encode(raw_text)
							 | 
						||
| 
								 | 
							
								    else:
							 | 
						||
| 
								 | 
							
								        raise NotImplementedError(f'Unknown chat format {chat_format!r}')
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    return raw_text, context_tokens
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def _decode_default(
							 | 
						||
| 
								 | 
							
								    tokens: List[int],
							 | 
						||
| 
								 | 
							
								    *,
							 | 
						||
| 
								 | 
							
								    stop_words: List[str],
							 | 
						||
| 
								 | 
							
								    eod_words: List[str],
							 | 
						||
| 
								 | 
							
								    tokenizer: PreTrainedTokenizer,
							 | 
						||
| 
								 | 
							
								    raw_text_len: int,
							 | 
						||
| 
								 | 
							
								    verbose: bool = False,
							 | 
						||
| 
								 | 
							
								    return_end_reason: bool = False,
							 | 
						||
| 
								 | 
							
								    errors: str = 'replace',
							 | 
						||
| 
								 | 
							
								):
							 | 
						||
| 
								 | 
							
								    trim_decode_tokens = tokenizer.decode(tokens, errors=errors)[raw_text_len:]
							 | 
						||
| 
								 | 
							
								    if verbose:
							 | 
						||
| 
								 | 
							
								        print('\nRaw Generate: ', trim_decode_tokens)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    end_reason = f'Gen length {len(tokens)}'
							 | 
						||
| 
								 | 
							
								    for stop_word in stop_words:
							 | 
						||
| 
								 | 
							
								        trim_decode_tokens = trim_decode_tokens.replace(stop_word, '').strip()
							 | 
						||
| 
								 | 
							
								    for eod_word in eod_words:
							 | 
						||
| 
								 | 
							
								        if eod_word in trim_decode_tokens:
							 | 
						||
| 
								 | 
							
								            end_reason = f'Gen {eod_word!r}'
							 | 
						||
| 
								 | 
							
								        trim_decode_tokens = trim_decode_tokens.split(eod_word)[0]
							 | 
						||
| 
								 | 
							
								    trim_decode_tokens = trim_decode_tokens.strip()
							 | 
						||
| 
								 | 
							
								    if verbose:
							 | 
						||
| 
								 | 
							
								        print('\nEnd Reason:', end_reason)
							 | 
						||
| 
								 | 
							
								        print('\nGenerate: ', trim_decode_tokens)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    if return_end_reason:
							 | 
						||
| 
								 | 
							
								        return trim_decode_tokens, end_reason
							 | 
						||
| 
								 | 
							
								    else:
							 | 
						||
| 
								 | 
							
								        return trim_decode_tokens
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def _decode_chatml(tokens: List[int],
							 | 
						||
| 
								 | 
							
								                   *,
							 | 
						||
| 
								 | 
							
								                   stop_words: List[str],
							 | 
						||
| 
								 | 
							
								                   eod_token_ids: List[int],
							 | 
						||
| 
								 | 
							
								                   tokenizer: PreTrainedTokenizer,
							 | 
						||
| 
								 | 
							
								                   raw_text_len: int,
							 | 
						||
| 
								 | 
							
								                   context_length: int,
							 | 
						||
| 
								 | 
							
								                   verbose: bool = False,
							 | 
						||
| 
								 | 
							
								                   return_end_reason: bool = False,
							 | 
						||
| 
								 | 
							
								                   errors: str = 'replace'):
							 | 
						||
| 
								 | 
							
								    end_reason = f'Gen length {len(tokens)}'
							 | 
						||
| 
								 | 
							
								    eod_token_idx = context_length
							 | 
						||
| 
								 | 
							
								    for eod_token_idx in range(context_length, len(tokens)):
							 | 
						||
| 
								 | 
							
								        if tokens[eod_token_idx] in eod_token_ids:
							 | 
						||
| 
								 | 
							
								            end_reason = f'Gen {tokenizer.decode([tokens[eod_token_idx]])!r}'
							 | 
						||
| 
								 | 
							
								            break
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    trim_decode_tokens = tokenizer.decode(tokens[:eod_token_idx],
							 | 
						||
| 
								 | 
							
								                                          errors=errors)[raw_text_len:]
							 | 
						||
| 
								 | 
							
								    if verbose:
							 | 
						||
| 
								 | 
							
								        print('\nRaw Generate w/o EOD:',
							 | 
						||
| 
								 | 
							
								              tokenizer.decode(tokens, errors=errors)[raw_text_len:])
							 | 
						||
| 
								 | 
							
								        print('\nRaw Generate:', trim_decode_tokens)
							 | 
						||
| 
								 | 
							
								        print('\nEnd Reason:', end_reason)
							 | 
						||
| 
								 | 
							
								    for stop_word in stop_words:
							 | 
						||
| 
								 | 
							
								        trim_decode_tokens = trim_decode_tokens.replace(stop_word, '').strip()
							 | 
						||
| 
								 | 
							
								    trim_decode_tokens = trim_decode_tokens.strip()
							 | 
						||
| 
								 | 
							
								    if verbose:
							 | 
						||
| 
								 | 
							
								        print('\nGenerate:', trim_decode_tokens)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    if return_end_reason:
							 | 
						||
| 
								 | 
							
								        return trim_decode_tokens, end_reason
							 | 
						||
| 
								 | 
							
								    else:
							 | 
						||
| 
								 | 
							
								        return trim_decode_tokens
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def decode_tokens(
							 | 
						||
| 
								 | 
							
								    tokens: Union[torch.LongTensor, TokensType],
							 | 
						||
| 
								 | 
							
								    tokenizer: PreTrainedTokenizer,
							 | 
						||
| 
								 | 
							
								    raw_text_len: int,
							 | 
						||
| 
								 | 
							
								    context_length: int,
							 | 
						||
| 
								 | 
							
								    chat_format: str,
							 | 
						||
| 
								 | 
							
								    verbose: bool = False,
							 | 
						||
| 
								 | 
							
								    return_end_reason: bool = False,
							 | 
						||
| 
								 | 
							
								    errors: str = 'replace',
							 | 
						||
| 
								 | 
							
								) -> str:
							 | 
						||
| 
								 | 
							
								    if torch.is_tensor(tokens):
							 | 
						||
| 
								 | 
							
								        tokens = tokens.cpu().numpy().tolist()
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    if chat_format == 'chatml':
							 | 
						||
| 
								 | 
							
								        return _decode_chatml(
							 | 
						||
| 
								 | 
							
								            tokens,
							 | 
						||
| 
								 | 
							
								            stop_words=[],
							 | 
						||
| 
								 | 
							
								            eod_token_ids=[tokenizer.im_start_id, tokenizer.im_end_id],
							 | 
						||
| 
								 | 
							
								            tokenizer=tokenizer,
							 | 
						||
| 
								 | 
							
								            raw_text_len=raw_text_len,
							 | 
						||
| 
								 | 
							
								            context_length=context_length,
							 | 
						||
| 
								 | 
							
								            verbose=verbose,
							 | 
						||
| 
								 | 
							
								            return_end_reason=return_end_reason,
							 | 
						||
| 
								 | 
							
								            errors=errors,
							 | 
						||
| 
								 | 
							
								        )
							 | 
						||
| 
								 | 
							
								    elif chat_format == 'raw':
							 | 
						||
| 
								 | 
							
								        return _decode_default(
							 | 
						||
| 
								 | 
							
								            tokens,
							 | 
						||
| 
								 | 
							
								            stop_words=['<|endoftext|>'],
							 | 
						||
| 
								 | 
							
								            eod_words=['<|endoftext|>'],
							 | 
						||
| 
								 | 
							
								            tokenizer=tokenizer,
							 | 
						||
| 
								 | 
							
								            raw_text_len=raw_text_len,
							 | 
						||
| 
								 | 
							
								            verbose=verbose,
							 | 
						||
| 
								 | 
							
								            return_end_reason=return_end_reason,
							 | 
						||
| 
								 | 
							
								            errors=errors,
							 | 
						||
| 
								 | 
							
								        )
							 | 
						||
| 
								 | 
							
								    else:
							 | 
						||
| 
								 | 
							
								        raise NotImplementedError(f'Unknown chat format {chat_format!r}')
							 |