294 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			294 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# Copyright (c) Alibaba Cloud.
 | 
						|
#
 | 
						|
# This source code is licensed under the license found in the
 | 
						|
# LICENSE file in the root directory of this source tree.
 | 
						|
"""Generation support."""
 | 
						|
 | 
						|
from typing import List, Tuple, Union
 | 
						|
 | 
						|
import torch
 | 
						|
from transformers import PreTrainedTokenizer
 | 
						|
 | 
						|
# Types.
 | 
						|
HistoryType = List[Tuple[str, str]]
 | 
						|
TokensType = List[int]
 | 
						|
BatchTokensType = List[List[int]]
 | 
						|
 | 
						|
 | 
						|
def pad_batch(batch: BatchTokensType, pad_id: int,
 | 
						|
              seq_length: int) -> BatchTokensType:
 | 
						|
    for tokens in batch:
 | 
						|
        context_length = len(tokens)
 | 
						|
        if context_length < seq_length:
 | 
						|
            tokens.extend([pad_id] * (seq_length - context_length))
 | 
						|
    return batch
 | 
						|
 | 
						|
 | 
						|
def get_ltor_masks_and_position_ids(
 | 
						|
    data: torch.Tensor,
 | 
						|
    eod_token: int,
 | 
						|
    reset_position_ids: bool,
 | 
						|
    reset_attention_mask: bool,
 | 
						|
    eod_mask_loss: bool,
 | 
						|
):
 | 
						|
    """Build masks and position id for left to right model."""
 | 
						|
 | 
						|
    # Extract batch size and sequence length.
 | 
						|
    micro_batch_size, seq_length = data.size()
 | 
						|
 | 
						|
    # Attention mask (lower triangular).
 | 
						|
    if reset_attention_mask:
 | 
						|
        att_mask_batch = micro_batch_size
 | 
						|
    else:
 | 
						|
        att_mask_batch = 1
 | 
						|
    attention_mask = torch.tril(
 | 
						|
        torch.ones((att_mask_batch, seq_length, seq_length),
 | 
						|
                   device=data.device)).view(att_mask_batch, 1, seq_length,
 | 
						|
                                             seq_length)
 | 
						|
 | 
						|
    # Loss mask.
 | 
						|
    loss_mask = torch.ones(data.size(), dtype=torch.float, device=data.device)
 | 
						|
    if eod_mask_loss:
 | 
						|
        loss_mask[data == eod_token] = 0.0
 | 
						|
 | 
						|
    # Position ids.
 | 
						|
    position_ids = torch.arange(seq_length,
 | 
						|
                                dtype=torch.long,
 | 
						|
                                device=data.device)
 | 
						|
    position_ids = position_ids.unsqueeze(0).expand_as(data)
 | 
						|
    # We need to clone as the ids will be modified based on batch index.
 | 
						|
    if reset_position_ids:
 | 
						|
        position_ids = position_ids.clone()
 | 
						|
 | 
						|
    if reset_position_ids or reset_attention_mask:
 | 
						|
        # Loop through the batches:
 | 
						|
        for b in range(micro_batch_size):
 | 
						|
 | 
						|
            # Find indices where EOD token is.
 | 
						|
            eod_index = position_ids[b, data[b] == eod_token]
 | 
						|
            # Detach indices from positions if going to modify positions.
 | 
						|
            if reset_position_ids:
 | 
						|
                eod_index = eod_index.clone()
 | 
						|
 | 
						|
            # Loop through EOD indices:
 | 
						|
            prev_index = 0
 | 
						|
            for j in range(eod_index.size()[0]):
 | 
						|
                i = eod_index[j]
 | 
						|
                # Mask attention loss.
 | 
						|
                if reset_attention_mask:
 | 
						|
                    attention_mask[b, 0, (i + 1):, :(i + 1)] = 0
 | 
						|
                # Reset positions.
 | 
						|
                if reset_position_ids:
 | 
						|
                    position_ids[b, (i + 1):] -= i + 1 - prev_index
 | 
						|
                    prev_index = i + 1
 | 
						|
 | 
						|
    # Convert attention mask to binary:
 | 
						|
    attention_mask = attention_mask < 0.5
 | 
						|
 | 
						|
    return attention_mask, loss_mask, position_ids
 | 
						|
 | 
						|
 | 
						|
def get_batch(context_tokens: torch.LongTensor, eod_id: int):
 | 
						|
    """Generate batch from context tokens."""
 | 
						|
    # Move to GPU.
 | 
						|
    tokens = context_tokens.contiguous().to(context_tokens.device)
 | 
						|
    # Get the attention mask and position ids.
 | 
						|
    attention_mask, _, position_ids = get_ltor_masks_and_position_ids(
 | 
						|
        tokens,
 | 
						|
        eod_id,
 | 
						|
        reset_position_ids=False,
 | 
						|
        reset_attention_mask=False,
 | 
						|
        eod_mask_loss=False,
 | 
						|
    )
 | 
						|
    return tokens, attention_mask, position_ids
 | 
						|
 | 
						|
 | 
						|
def get_stop_words_ids(chat_format: str, tokenizer: PreTrainedTokenizer):
 | 
						|
    if chat_format == 'raw':
 | 
						|
        stop_words_ids = [tokenizer.encode('Human:'), [tokenizer.eod_id]]
 | 
						|
    elif chat_format == 'chatml':
 | 
						|
        stop_words_ids = [[tokenizer.im_end_id], [tokenizer.im_start_id]]
 | 
						|
    else:
 | 
						|
        raise NotImplementedError(f'Unknown chat format {chat_format!r}')
 | 
						|
    return stop_words_ids
 | 
						|
 | 
						|
 | 
						|
def make_context(
 | 
						|
    tokenizer: PreTrainedTokenizer,
 | 
						|
    query: str,
 | 
						|
    history: List[Tuple[str, str]] = None,
 | 
						|
    system: str = '',
 | 
						|
    max_window_size: int = 6144,
 | 
						|
    chat_format: str = 'chatml',
 | 
						|
):
 | 
						|
    if history is None:
 | 
						|
        history = []
 | 
						|
 | 
						|
    if chat_format == 'chatml':
 | 
						|
        im_start, im_end = '<|im_start|>', '<|im_end|>'
 | 
						|
        im_start_tokens = [tokenizer.im_start_id]
 | 
						|
        im_end_tokens = [tokenizer.im_end_id]
 | 
						|
        nl_tokens = tokenizer.encode('\n')
 | 
						|
 | 
						|
        def _tokenize_str(role, content):
 | 
						|
            return f'{role}\n{content}', tokenizer.encode(
 | 
						|
                role, allowed_special=set(
 | 
						|
                    tokenizer.IMAGE_ST)) + nl_tokens + tokenizer.encode(
 | 
						|
                        content, allowed_special=set(tokenizer.IMAGE_ST))
 | 
						|
 | 
						|
        system_text, system_tokens_part = _tokenize_str('system', system)
 | 
						|
        system_tokens = im_start_tokens + system_tokens_part + im_end_tokens
 | 
						|
 | 
						|
        raw_text = ''
 | 
						|
        context_tokens = []
 | 
						|
 | 
						|
        for turn_query, turn_response in reversed(history):
 | 
						|
            query_text, query_tokens_part = _tokenize_str('user', turn_query)
 | 
						|
            query_tokens = im_start_tokens + query_tokens_part + im_end_tokens
 | 
						|
            if turn_response is not None:
 | 
						|
                response_text, response_tokens_part = _tokenize_str(
 | 
						|
                    'assistant', turn_response)
 | 
						|
                response_tokens = im_start_tokens + response_tokens_part + im_end_tokens  # noqa
 | 
						|
 | 
						|
                next_context_tokens = nl_tokens + query_tokens + nl_tokens + response_tokens  # noqa
 | 
						|
                prev_chat = (
 | 
						|
                    f'\n{im_start}{query_text}{im_end}\n{im_start}{response_text}{im_end}'  # noqa
 | 
						|
                )
 | 
						|
            else:
 | 
						|
                next_context_tokens = nl_tokens + query_tokens + nl_tokens
 | 
						|
                prev_chat = f'\n{im_start}{query_text}{im_end}\n'
 | 
						|
 | 
						|
            current_context_size = (len(system_tokens) +
 | 
						|
                                    len(next_context_tokens) +
 | 
						|
                                    len(context_tokens))
 | 
						|
            if current_context_size < max_window_size:
 | 
						|
                context_tokens = next_context_tokens + context_tokens
 | 
						|
                raw_text = prev_chat + raw_text
 | 
						|
            else:
 | 
						|
                break
 | 
						|
 | 
						|
        context_tokens = system_tokens + context_tokens
 | 
						|
        raw_text = f'{im_start}{system_text}{im_end}' + raw_text
 | 
						|
        context_tokens += (nl_tokens + im_start_tokens +
 | 
						|
                           _tokenize_str('user', query)[1] + im_end_tokens +
 | 
						|
                           nl_tokens + im_start_tokens +
 | 
						|
                           tokenizer.encode('assistant') + nl_tokens)
 | 
						|
        raw_text += f'\n{im_start}user\n{query}{im_end}\n{im_start}assistant\n'
 | 
						|
 | 
						|
    elif chat_format == 'raw':
 | 
						|
        raw_text = query
 | 
						|
        context_tokens = tokenizer.encode(raw_text)
 | 
						|
    else:
 | 
						|
        raise NotImplementedError(f'Unknown chat format {chat_format!r}')
 | 
						|
 | 
						|
    return raw_text, context_tokens
 | 
						|
 | 
						|
 | 
						|
def _decode_default(
 | 
						|
    tokens: List[int],
 | 
						|
    *,
 | 
						|
    stop_words: List[str],
 | 
						|
    eod_words: List[str],
 | 
						|
    tokenizer: PreTrainedTokenizer,
 | 
						|
    raw_text_len: int,
 | 
						|
    verbose: bool = False,
 | 
						|
    return_end_reason: bool = False,
 | 
						|
    errors: str = 'replace',
 | 
						|
):
 | 
						|
    trim_decode_tokens = tokenizer.decode(tokens, errors=errors)[raw_text_len:]
 | 
						|
    if verbose:
 | 
						|
        print('\nRaw Generate: ', trim_decode_tokens)
 | 
						|
 | 
						|
    end_reason = f'Gen length {len(tokens)}'
 | 
						|
    for stop_word in stop_words:
 | 
						|
        trim_decode_tokens = trim_decode_tokens.replace(stop_word, '').strip()
 | 
						|
    for eod_word in eod_words:
 | 
						|
        if eod_word in trim_decode_tokens:
 | 
						|
            end_reason = f'Gen {eod_word!r}'
 | 
						|
        trim_decode_tokens = trim_decode_tokens.split(eod_word)[0]
 | 
						|
    trim_decode_tokens = trim_decode_tokens.strip()
 | 
						|
    if verbose:
 | 
						|
        print('\nEnd Reason:', end_reason)
 | 
						|
        print('\nGenerate: ', trim_decode_tokens)
 | 
						|
 | 
						|
    if return_end_reason:
 | 
						|
        return trim_decode_tokens, end_reason
 | 
						|
    else:
 | 
						|
        return trim_decode_tokens
 | 
						|
 | 
						|
 | 
						|
def _decode_chatml(tokens: List[int],
 | 
						|
                   *,
 | 
						|
                   stop_words: List[str],
 | 
						|
                   eod_token_ids: List[int],
 | 
						|
                   tokenizer: PreTrainedTokenizer,
 | 
						|
                   raw_text_len: int,
 | 
						|
                   context_length: int,
 | 
						|
                   verbose: bool = False,
 | 
						|
                   return_end_reason: bool = False,
 | 
						|
                   errors: str = 'replace'):
 | 
						|
    end_reason = f'Gen length {len(tokens)}'
 | 
						|
    eod_token_idx = context_length
 | 
						|
    for eod_token_idx in range(context_length, len(tokens)):
 | 
						|
        if tokens[eod_token_idx] in eod_token_ids:
 | 
						|
            end_reason = f'Gen {tokenizer.decode([tokens[eod_token_idx]])!r}'
 | 
						|
            break
 | 
						|
 | 
						|
    trim_decode_tokens = tokenizer.decode(tokens[:eod_token_idx],
 | 
						|
                                          errors=errors)[raw_text_len:]
 | 
						|
    if verbose:
 | 
						|
        print('\nRaw Generate w/o EOD:',
 | 
						|
              tokenizer.decode(tokens, errors=errors)[raw_text_len:])
 | 
						|
        print('\nRaw Generate:', trim_decode_tokens)
 | 
						|
        print('\nEnd Reason:', end_reason)
 | 
						|
    for stop_word in stop_words:
 | 
						|
        trim_decode_tokens = trim_decode_tokens.replace(stop_word, '').strip()
 | 
						|
    trim_decode_tokens = trim_decode_tokens.strip()
 | 
						|
    if verbose:
 | 
						|
        print('\nGenerate:', trim_decode_tokens)
 | 
						|
 | 
						|
    if return_end_reason:
 | 
						|
        return trim_decode_tokens, end_reason
 | 
						|
    else:
 | 
						|
        return trim_decode_tokens
 | 
						|
 | 
						|
 | 
						|
def decode_tokens(
 | 
						|
    tokens: Union[torch.LongTensor, TokensType],
 | 
						|
    tokenizer: PreTrainedTokenizer,
 | 
						|
    raw_text_len: int,
 | 
						|
    context_length: int,
 | 
						|
    chat_format: str,
 | 
						|
    verbose: bool = False,
 | 
						|
    return_end_reason: bool = False,
 | 
						|
    errors: str = 'replace',
 | 
						|
) -> str:
 | 
						|
    if torch.is_tensor(tokens):
 | 
						|
        tokens = tokens.cpu().numpy().tolist()
 | 
						|
 | 
						|
    if chat_format == 'chatml':
 | 
						|
        return _decode_chatml(
 | 
						|
            tokens,
 | 
						|
            stop_words=[],
 | 
						|
            eod_token_ids=[tokenizer.im_start_id, tokenizer.im_end_id],
 | 
						|
            tokenizer=tokenizer,
 | 
						|
            raw_text_len=raw_text_len,
 | 
						|
            context_length=context_length,
 | 
						|
            verbose=verbose,
 | 
						|
            return_end_reason=return_end_reason,
 | 
						|
            errors=errors,
 | 
						|
        )
 | 
						|
    elif chat_format == 'raw':
 | 
						|
        return _decode_default(
 | 
						|
            tokens,
 | 
						|
            stop_words=['<|endoftext|>'],
 | 
						|
            eod_words=['<|endoftext|>'],
 | 
						|
            tokenizer=tokenizer,
 | 
						|
            raw_text_len=raw_text_len,
 | 
						|
            verbose=verbose,
 | 
						|
            return_end_reason=return_end_reason,
 | 
						|
            errors=errors,
 | 
						|
        )
 | 
						|
    else:
 | 
						|
        raise NotImplementedError(f'Unknown chat format {chat_format!r}')
 |