dataset-opencompass/data/cmmlu/test/machine_learning.csv
2025-07-18 07:25:44 +00:00

124 lines
28 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

,Question,A,B,C,D,Answer
0,"在二分类问题中当测试集的正例和负例数量不均衡时以下评价方案哪个是相对不合理的假设precision=TP/(TP+FP),recall=TP/(TP+FN)。)",F-值:2recallprecision/(recall+precision),G-mean:sqrt(precision*recall),准确性:(TP+TN)/all,AUC:ROC曲线下面积,C
1,深度学习中遇见过拟合下列哪个处理办法不可取 ,加dropout层,加深层数,数据增强,加正则项,B
2,假设我们有一个数据集,在一个深度为 6 的决策树的帮助下,它可以使用 100% 的精确度被训练。现在考虑一下两点并基于这两点选择正确的选项。1.深度为 4 时将有高偏差和低方差2.深度为 4 时将有低偏差和低方差。注意:所有其他超参数是相同的,所有其他因子不受影响。,1 和 2,只有 2,没有一个,只有 1,D
3,下列哪些方法不可以用来对高维数据进行降维,LASSO,Bagging,主成分分析法,聚类分析,B
4,机器学习中L1正则化和L2正则化的区别是 ,使用L1可以得到稀疏、平滑的权值,使用L2可以得到稀疏、平滑的权值,使用L1可以得到稀疏的权值、使用L2可以得到平滑的权值,使用L2可以得到稀疏的权值、使用L1可以得到平滑的权值,C
5,下列关于隐马模型和条件随机场模型的说法中错误的是? ,隐马模型和隐马模型隐可用于命名实体识别、分词和词性标注的任务,隐马模型和隐马模型都是生成模型,隐马模型不是概率无向图模型,特征的选取和优化会严重影响隐马模型的结果,B
6,下面哪个/些超参数的增加可能会造成随机森林数据过拟合,学习速率,树的数量,树的深度,以上都不是,C
7,下面关于迭代二叉树3代算法中说法错误的是,迭代二叉树3代算法是一个二叉树模型,信息增益可以用熵而不是GINI系数来计算,迭代二叉树3代算法要求特征必须离散化,选取信息增益最大的特征,作为树的根节点,A
8,下面哪个/些选项对 K 折交叉验证的描述是正确的,如果 K=N那么其称为留一交叉验证其中 N 为验证集中的样本数量,更大的 K 值相比于小 K 值将对交叉验证结构有更高的信心,以上都是,增大 K 将导致交叉验证结果时需要更多的时间,C
9,已知有m个样本进行nn<=m次采样。bootstrap数据是什么意思,无放回地从总共N个样本中抽样n个样本,无放回地从总共M个特征中抽样m个特征,有放回地从总共N个样本中抽样n个样本,有放回地从总共M个特征中抽样m个特征,C
10,如果以特征向量的相关系数作为模式相似性测度,则影响聚类算法结果的主要因素有,量纲,已知类别样本质量,以上都不是,分类准则,D
11,模型训练过程中,我们一般将数据分成 ,验证集,测试集,训练集,其他选项均可,D
12,你正在使用带有 L1 正则化的 logistic 回归做二分类,其中 C 是正则化参数w1 和 w2 是 x1 和 x2 的系数。当你把 C 值从 0 增加至非常大的值时,下面哪个选项是正确的,第一个 w1 成了 0接着 w2 也成了 0,w1 和 w2 同时成了 0,第一个 w2 成了 0接着 w1 也成了 0,即使在 C 成为大值之后w1 和 w2 都不能成 0,D
13,下列方法中,不可以用于特征降维的方法包括,深度学习SparseAutoEncoder,矩阵奇异值分解SVD,线性判别分析,主成分分析,A
14,贝叶斯定理求得是什么概率? ,先验概率,其它选项都不是,条件概率,联合概率,C
15,在机器学习中,解释学习器泛化性能中经常用到偏差-方差分解,下列说法不正确的是 ,方差体现的是学习器预测的稳定性,偏差体现的是学习器预测的准确度,泛化性能是由学习算法的能力、数据的充分性以及学习任务本身的难度所共同决定的,方差指的是预测的期望值与真实值的偏差,D
16,假如你用logistic Regression 算法去预测电脑销量,当你在新的测试集上验证你的假设时,发现预测值有很大的偏差,并且你的假设在训练集上表现也很差,下面那些步骤你应该避免采纳,尝试着减小正则项 λ,尝试增加交叉特征,增大样本量,尝试更小的测试集或者特征,D
17,以P(w)表示词条w的概率假设已知P南京=0.8P市长=0.6P江大桥=0.4P南京市=0.3P长江大桥=0.5:如果假设前后两个词的出现是独立的,那么分词结果就是,南京_市长_江大桥,南京市_长江_大桥,南京市长_江大桥,南京市_长江大桥,A
18,对数几率回归logistics regression和一般回归分析有什么区别,对数几率回归是设计用来预测事件可能性的,对数几率回归可以用来估计回归系数,以上都是,对数几率回归可以用来度量模型拟合程度,C
19,下面哪些对「类型 1Type-1」和「类型 2Type-2」错误的描述是错误的,类型 1 错误通常在其是正确的情况下拒绝假设而出现,类型 1 通常称之为假正类,类型 2 通常称之为假负类,以上都是,类型 2 通常称之为假正类,类型 1 通常称之为假负类,D
20,影响基本K-均值算法的主要因素有,初始类中心的选取,聚类准则,样本输入顺序,模式相似性测度,D
21,高斯混合模型(GMM)是一种什么模型,无监督学习模型,其他选项都不是,半监督学习模型,有监督学习模型,A
22,基于语法规则的方法为,条件随机场,最大熵模型,句法、语义分析,最大熵隐马尔科夫模型,B
23,"有两个样本点,第一个点为正样本,它的特征向量是(0,-1);第二个点为负样本,它的特征向量是(2,3),从这两个样本点组成的训练集构建一个线性SVM分类器的分类面方程是",2x-y=0,x+2y=5,x+2y=3,2x+y=4,C
24,隐马尔可夫模型,设其观察值空间为 状态空间为 如果用维特比算法(Viterbi algorithm)进行解码,时间复杂度为,O(NK),O(N^2K),以上都不是,O(NK^2),C
25,假定你使用了一个很大γ值的RBF核这意味着,模型不会被点到超平面的距离所影响,以上都不是,模型仅使用接近超平面的点来建模,模型将考虑使用远离超平面的点建模,C
26,关于 ARMA (auto regressive moving average model)(自回归滑动平均模型)、 AR (auto regressive model)(自回归模型)、 MA滑动平均模型 模型的功率谱,下列说法正确的是,AR模型在零点接近单位圆时AR谱是一个尖峰,MA模型是同一个全通滤波器产生的,MA模型在极点接近单位圆时MA谱是一个深谷,RMA谱既有尖峰又有深谷,D
27,变量选择是用来选择最好的判别器子集, 如果要考虑模型效率,我们应该做除了下列哪项的变量选择的考虑,交叉验证,变量对于模型的解释有多大作用,特征携带的信息,多个变量其实有相同的用处,B
28,"下列时间序列模型中,哪一个模型可以较好地拟合波动性的分析和预测",auto regressive model AR模型,自回归滑动平均模型,滑动平均模型,广义自回归滑动平均模型,D
29,"当我们构造线性模型时, 我们注意变量间的相关性. 在相关矩阵中搜索相关系数时, 如果我们发现3对变量的相关系数是(Var1 和Var2, Var2和Var3, Var3和Var1)是-0.98, 0.45, 1.23 . 我们可以得出什么结论",以上都是,"因为Var1和Var2是非常相关的, 我们可以去除其中一个",Var1和Var2是非常相关的,Var3和Var1的1.23相关系数是不可能的,A
30,机器学习中做特征选择时,可能用到的方法有,以上都有,卡方,信息增益,期望交叉熵,A
31,LSTM与GRU的一个主要区别在于GRU将LSTM的哪几个gate融合了,forget gate和input gate, input gate和output gate,forget gate和output gate,output gate和reset gate,A
32,符号集 a 、 b 、 c 、 d ,它们相互独立,相应概率为 1/2 、 1/4 、 1/8/ 、 1/16 ,其中包含信息量最小的符号是,d,b,a,c,C
33,假设你使用 log-loss 函数作为评估标准。下面这些选项,哪些是对作为评估标准的 log-loss 的正确解释,以上都是,log-loss 越低,模型越好,对一个特别的观察而言,分类器为正确的类别分配非常小的概率,然后对 log-loss 的相应分布会非常大,如果一个分类器对不正确的分类很自信log-loss 会严重的批评它,A
34,"已知一组数据的协方差矩阵P,下面关于主分量说法错误的是",主分量分析就是K-L变换,"在经主分量分解后,协方差矩阵成为对角矩阵","主分量分析的最佳准则是对一组数据进行按一组正交基分解, 在只取相同数量分量的条件下,以均方误差计算截尾误差最小",主分量是通过求协方差矩阵的特征值得到,A
35,下列关于attention机制的说法错误的是,attention机制会给序列中的元素分配一个权重系数,attention机制可以用于机器阅读理解、问答对话等场景中,传统encoder-decoder模型存在长距离依赖问题,attention机制的变体多头attention机制不适合并行其每一步计算依赖于上一步的计算结果,D
36,以下哪项不是降低过拟合的方法,收集更多训练数据,进行数据清洗,减少噪声,增加神经网络隐藏层节点数,简化模型假设,C
37,"给定三个变量 XYZ。(X, Y)、(Y, Z) 和 (X, Z) 的 Pearson 相关性系数分别为 C1、C2 和 C3。现在 X 的所有值加 2即 X+2Y 的全部值减 2即 Y-2Z 保持不变。那么运算之后的 (X, Y)、(Y, Z) 和 (X, Z) 相关性系数分别为 D1、D2 和 D3。现在试问 D1、D2、D3 和 C1、C2、C3 之间的关系是什么","D1 = C1, D2 < C2, D3 < C3","D1= C1, D2 < C2, D3 > C3","D1 = C1, D2 = C2, D3 = C3","D1 = C1, D2 > C2, D3 > C3",C
38,在决策树中用作分裂节点的information gain说法不正确的是,信息增益更加倾向于选择有较多取值的属性,信息增益可以使用熵得到,较小不纯度的节点需要更多的信息来区分总体,以上均不是,C
39,下列关于回归分析中的残差表述正确的是,残差的平均值总小于零,残差的平均值总大于零,残差的平均值总为零,残差没有此类规律,C
40,"我们建立一个5000个特征, 100万数据的机器学习模型. 我们怎么有效地应对这样的大数据训练 ","我们随机抽取一些样本, 在这些少量样本之上训练",以上所有,我们可以试用在线机器学习算法,"我们应用PCA算法降维, 减少特征数",B
41,下列哪个不属于条件随机场模型对于隐马尔科夫模型和最大熵隐马尔科夫模型模型的优势,速度快,可容纳较多上下文信息,全局最优,特征灵活,A
42,下列哪项不是基于词典的方法的中文分词的基本方法,最大熵模型,最大概率法,最大匹配法,最短路径法,A
43,假定你使用SVM学习数据X数据X里面有些点存在错误。现在如果你使用一个二次核函数多项式阶数为2使用松弛变量C作为超参之一。 如果使用较小的CC趋于0,不确定,误分类,正确分类,以上均不正确,B
44,以下哪种方法属于生成模型,条件随机场,传统神经网络,朴素贝叶斯,线性回归,C
45,在其它条件不变的前提下,以下哪种做法容易引起机器学习中的过拟合问题,增加训练集数量,删除稀疏的特征,SVM算法中使用高斯核/RBF核代替,减少神经网络隐藏层节点数,C
46,对应GradientBoosting tree算法 以下说法正确的是,当增加最小样本分裂个数,我们可以抵制过拟合,当我们减少训练单个学习器的样本个数,我们可以降低偏差,当增加最小样本分裂个数,会导致过拟合,当我们增加训练单个学习器的样本个数,我们可以降低方差,A
47,假设你训练SVM后得到一个线性决策边界你认为该模型欠拟合。在下次迭代训练模型时应该考虑,减少训练数据,减少特征,计算更多变量,增加训练数据,C
48,语音信号由于具有什么特性,所以我们可以将语音信号进行分窗处理? ,随机单调性,其他选项都不是,短时平稳性,单调不变性,C
49,"对于k折交叉验证, 以下对k的说法正确的是","选择更大的k, 就会有更小的bias (因为训练集更加接近总数据集)","k越大, 不一定越好, 选择大的k会加大评估时间","在选择k时, 要最小化数据集之间的方差",以上所有,D
50,以下属于欧式距离特性的有,尺度缩放不变性,旋转不变性,不受量纲影响的特性,考虑了模式的分布,B
51,"朴素贝叶斯是一种特殊的贝叶斯分类器,特征变量是X,类别标签是C,它的一个假定是",特征变量X的各个维度是类别条件独立随机变量,P(X|C)是高斯分布,以0为均值sqr(2)/2为标准差的正态分布,各类别的先验概率P(C)是相等的,A
52,在一个n维的空间中 最好的检测outlier(离群点)的方法是,作盒形图,作散点图,作正态分布概率图,马氏距离,D
53,对于线性回归模型,包括附加变量在内,以下的可能正确的是 ,R-Squared 是递减的, Adjusted R-squared 也是递减的,R-Squared 是常量的Adjusted R-squared是递增的,R-Squared 和 Adjusted R-squared都是递增的,以上都不是,D
54,数据科学家可能会同时使用多个算法(模型)进行预测, 并且最后把这些算法的结果集成起来进行最后的预测(集成学习),以下对集成学习说法正确的是,单个模型之间有高相关性,单个模型都是用的一个算法,单个模型之间有低相关性,在集成学习中使用“平均权重”而不是“投票”会比较好,C
55,"我们想在大数据集上训练决策树, 为了使用较少时间, 我们可以",增加学习率 ,减少树的数量,增加树的深度,减少树的深度,D
56,"我们想要减少数据集中的特征数, 即降维. 选择以下适合的方案",以上所有,"我们先把所有特征都使用, 去训练一个模型, 得到测试集上的表现. 然后我们去掉一个特征, 再去训练, 用交叉验证看看测试集上的表现. 如果表现比原来还要好, 我们可以去除这个特征",使用前向特征选择方法和后向特征排除方法,"查看相关性表, 去除相关性最高的一些特征",A
57,以下哪个激活函数不能解决梯度弥散的问题,Leaky-Relu,Elu,Sigmoid,Relu,C
58,下列哪个不属于常用的文本分类的特征选择算法,主成分分析,互信息,信息增益,卡方检验值,A
59,Fisher线性判别函数的求解过程是将M维特征矢量投影在 )中进行求解,一维空间,三维空间,M-1维空间,二维空间,A
60,下列哪一项说明了XY之间的较强关系,相关系数为0.9,都不对,Beta系数为0的空假设的p-value是0.0001,Beta系数为0的空假设的t统计量是30,A
61,在 k-均值算法中,以下哪个选项可用于获得全局最小?,以上所有,找到集群的最佳数量,调整迭代的次数,尝试为不同的质心centroid初始化运行算法,A
62,在统计语言模型中,通常以概率的形式描述任意语句的可能性,利用最大相似度估计进行度量,对于一些低频词,无论如何扩大训练数据,出现的频度仍然很低,下列哪种方法能解决这一问题,数据平滑,N元文法,一元文法,一元切分,A
63,以下说法中错误的是,给定n个数据点如果其中一半用于训练一半用户测试则训练误差和测试误差之间的差别会随着n的增加而减少的,boosting和bagging都是组合多个分类器投票的方法二者都是根据单个分类器的正确率确定其权重,SVM对噪声如来自其他分部的噪声样本具备鲁棒性,在adaboost算法中所有被分错样本的权重更新比例不相同,B
64,"一个二进制源X发出符号集为{-1,1}经过离散无记忆信道传输由于信道中噪音的存在接收端Y收到符号集为{-1,1,0}。已知P(x=-1)=1/4P(x=1)=3/4P(y=-1|x=-1)=4/5P(y=0|x=-1)=1/5P(y=1|x=1)=3/4P(y=0|x=1)=1/4求条件熵H(Y|X)",0.5372,0.2375,0.5273,0.3275,B
65,以下哪种技术对于减少数据集的维度会更好?,删除数据差异较大的列,删除缺少值太多的列,删除不同数据趋势的列,都不是,B
66,下列哪些不特别适合用来对高维数据进行降维,聚类分析,LASSO,小波分析法,拉普拉斯特征映射,A
67,逻辑回归与多元回归分析有哪些不同?,逻辑回归回归系数的评估,逻辑回归预测某事件发生的概率,逻辑回归有较高的拟合效果,以上全选,D
68,最出名的降维算法是 PCA 和 t-SNE。将这两个算法分别应用到数据「X」上并得到数据集「X_projected_PCA」「X_projected_tSNE」。下面哪一项对「X_projected_PCA」和「X_projected_tSNE」的描述是正确的,两个都在最近邻空间能得到解释,X_projected_PCA 在最近邻空间能得到解释,两个都不能在最近邻空间得到解释,X_projected_tSNE 在最近邻空间能得到解释,D
69,下列关于维特比算法(Viterbi)的说法中错误的是,维特比算法中的转移概率是从一个隐含状态转移到另一个隐含状态的概率,维特比算法是一种贪心算法,维特比算法可应用于中文分词任务,维特比算法可得到全局最优解,B
70,以下( )不属于线性分类器最佳准则,贝叶斯分类,感知准则函数,支持向量机,Fisher准则,A
71,对于线性回归,我们应该有以下哪些假设,"找到离群点很重要, 因为线性回归对离群点很敏感",线性回归假设数据没有多重线性相关性,线性回归要求所有变量必须符合正态分布,以上都不是,D
72,下面不是迭代二叉树3代算法对数据的要求,所有的训练例的所有属性必须有一个明确的值,所有属性必须为离散量,所有属性必须为连续,相同的因素必须得到相同的结论且训练例必须唯一,C
73,下面的优化算法中,速度最快的是 ,BFGS,梯度下降法,牛顿法,Adam,C
74,下列关于ALBERT的说法不正确的是 ,跨层参数共享,采用词嵌入向量参数的因式分解,应用在下游任务中预测速度显著提速,去掉了dropout,D
75,下面哪个属于SVM应用,新文章聚类,文本和超文本分类,图像分类,以上均是,D
76,类域界面方程法中,不能求线性不可分情况下分类问题近似或精确解的方法是,基于二次准则的H-K算法,感知器算法 ,势函数法,伪逆法,B
77,下面哪个选项中哪一项属于确定性算法,K-Means,PCA,KNN,以上都不是,B
78,"以下哪些算法, 1. KNN2. 线性回归3.对数几率回归。可以用神经网络去构造:",2 和 3,1和 2,以上都不是,"1, 2 和 3",A
79,训练SVM的最小时间复杂度为O(n2)那么一下哪种数据集不适合用SVM?,和数据集大小无关,大数据集,小数据集,中等大小数据集,B
80,如果线性回归模型中的随机误差存在异方差性,那么参数的普通最小二乘法估计量是,无偏的,非有效的,无偏的,有效的,有偏的,非有效的,有偏的,有效的,A
81,下列关于RoBERTa的说法不正确的是 ,不做NSP任务,采用静态掩码机制,采用更多训练数据,训练采用更大batch size,B
82,在逻辑回归输出与目标对比的情况下,以下评估指标中哪一项不适用?,准确度,均方误差,AUC-ROC,Logloss,B
83,语言模型的参数估计经常使用MLE最大似然估计。面临的一个问题是没有出现的项概率为0这样会导致语言模型的效果不好。为了解决这个问题需要使用,增加白噪音,平滑,随机插值,去噪,B
84,建模北京市人口的年龄分布,采用什么分布更合适,0-1分布,正态分布,泊松分布,指数分布,B
85,SVM中的代价参数表示,误分类与模型复杂性之间的平衡,以上均不是,使用的核,交叉验证的次数,A
86,关于SVM泛化误差描述正确的是,超平面与支持向量之间距离,SVM的误差阈值,以上都不是,SVM对未知数据的预测能力,D
87,下列关于BERT的说法不正确的是 ,支持对语义上下文进行建模,采用激活函数GELU,网络一共有20层,使用transformer,C
88,模式识别中,不属于马式距离较之于欧式距离的优点的是,尺度不变性,平移不变性,考虑到各种特性之间的联系,考虑了模式的分布,B
89,描述的机器发生故障的次数,采用什么分布更合适? ,0-1分布,指数分布,正态分布,泊松分布,D
90,以下哪个不是LSTM本身的特点 ,LSTM是RNN的一种变种,防止梯度弥散,训练时GPU使用率较高,LSTM有遗忘门,C
91,关于逻辑回归和支持向量机不正确的是,逻辑回归本质上是一种根据样本对权值进行极大似然估计的方法,而后验概率正比于先验概率和似然函数的乘积。逻辑仅仅是最大化似然函数,并没有最大化后验概率,更谈不上最小化后验概率,支持向量机可以通过正则化系数控制模型的复杂度,避免过拟合。,支持向量机的目标是找到使得训练数据尽可能分开且分类间隔最大的超平面,应该属于结构风险最小化,逻辑回归的输出就是样本属于正类别的几率,可以计算出概率。,A
92,以下不属于影响聚类算法结果的主要因素有,特征选取,已知类别的样本质量,分类准则,模式相似性测度,B
93,高斯混合模型(GMM)采用什么准则进行训练,均方误差最小化,经验风险最小化,期望最大化,其他选项都不是,C
94,以下说法正确的是,一个机器学习模型,如果有较高准确率,并不难总是说明这个分类器是好的,我们不可以使用聚类“类别id”作为一个新的特征项 然后再用监督学习分别进行学习,如果增加模型复杂度, 那么模型的测试错误率总是会降低,如果增加模型复杂度, 那么模型的训练错误率总是会降低,A
95,中文同义词替换时常用到Word2Vec以下说法错误的是,Word2Vec结果符合当前预料环境,Word2Vec得到的都是语义上的同义词,Word2Vec受限于训练语料的数量和质量,Word2Vec基于概率统计,B
96,"在以下不同的场景中,使用的分析方法不正确的有","根据商家最近一年的经营及服务数据,用聚类算法判断出天猫商家在各自主营类目下所属的商家层级","根据商家近几年的成交数据,用聚类算法拟合出用户未来一个月可能的消费金额公式","用关联规则算法分析出购买了汽车坐垫的买家,是否适合推荐汽车脚垫","根据用户最近购买的商品信息,用决策树算法识别出淘宝买家可能是男还是女",B
97,在数据清理中,下面哪个不是处理缺失值的方法,变量删除,估算,整例删除,成对删除,D
98,以下关于LDA(Latent Dirichlet allocation)的说法错误的是,LDA是非监督学习技术,LDA可通过EM的思想求解,当选取一篇文档后,对于该文档主题的分布是确定的,LDA包含词主题和文档三层结构,C
99,如果我使用数据集的全部特征并且能够达到100%的准确率但在测试集上仅能达到70%左右,这说明:,以上均不正确,欠拟合,过拟合,模型很棒,C
100,假定你使用SVM学习数据X数据X里面有些点存在错误。现在如果你使用一个二次核函数多项式阶数为2使用松弛变量C作为超参之一。 当你使用较大的CC趋于无穷,以上均不正确,不确定,不能正确分类,仍然能正确分类数据,D
101,基于统计的分词方法为,正向量最大匹配法,条件随机场,最少切分,逆向量最大匹配法,B
102,假定某同学使用假定某同学使用朴素贝叶斯分类模型时,不小心将训练数据的两个维度搞重复了,那么关于朴素贝叶斯的说法中不正确的是,模型效果相比无重复特征的情况下精确度会降低,模型效果相比无重复特征的情况下精确度会提高,当两列特征高度相关时,无法用两列特征相同时所得到的结论来分析问题,如果所有特征都被重复一遍,得到的模型预测结果相对于不重复的情况下的模型预测结果一样,D
103,下列关于word2vec的说法中错误的是,使用词向量可得到以下等式:King - man + woman = Queen,Skip-gram是给定词窗中的文本预测当前词的概率,word2vec的假设是词袋模型词的顺序是不重要的,word2vec训练中使用了Negative Sample与Hierarchical Softmax两种加速算法,B
104,以下描述正确的是 ,聚类分析可以看作是一种非监督的分类。,在聚类分析当中,簇内的相似性越大,簇间的差别越大,聚类的效果就越差。,SVM是这样一个分类器他寻找具有最小边缘的超平面因此它也经常被称为最小边缘分类器,在决策树中,随着树中结点数变得太大,即使模型的训练误差还在继续减低,但是检验误差开始增大,这是出现了模型拟合不足的问题。,A
105,"下列选项中,识别模式与其他不⼀样的是",出⾏方式判断:步⾏、骑车、坐车,⽤户年龄分布判断:少年、青年、中年、⽼年,投递员分拣信件,医⽣给病⼈诊断发病类型,A
106,下列说法不正确的是,梯度下降法是利用当前位置的负梯度作为搜索方向的方法,共轭梯度法仅需利用一阶导数的信息,但是收敛速度高于梯度下降法,批量梯度下降和随机梯度下降相比,批量梯度下降优势是对于大规模样本效率很高,牛顿法和梯度下降法相比,一个劣势是求解复杂,一个优势是收敛速度加快,C
107,"在隐马尔科夫模型中,如果已知观察序列和产生观察序列的状态序列,那么可用以下哪种方法直接进行参数估计",前向后向算法,极大似然估计 ,维特比算法,EM算法,B
108,LDA(Latent Dirichlet allocation)中归属于同一主题下单词分布的先验分布是? ,正态分布,狄利克雷分布,多项分布,二项分布,C
109,线性回归的基本假设不包括哪个,对于解释变量的所有观测值,随机误差项有相同的方差,随机误差项是一个期望值为0的随机变量,随机误差项服从正态分布,随机误差项彼此相关,D
110,下列不是SVM核函数的是,Sigmoid核函数,径向基核函数,多项式核函数,logistic核函数,D
111,下列哪些是非监督学习方法 ,SVM,K-means,KNN,决策树,B
112,以下哪种方法属于判别式模型,贝叶斯网络,朴素贝叶斯,隐马模型 ,支持向量机,D
113,下面的交叉验证方法i. 有放回的Bootstrap方法ii. 留一个测试样本的交叉验证iii. 5折交叉验证iv. 重复两次的5折教程验证。当样本是1000时下面执行时间的顺序正确的是,ii > iv > iii > i,ii > iii > iv > i,iv > i > ii > iii,i > ii > iii > iv,A
114,Seq2Seq模型在解码时可以选用的方法 ,贪心算法,二者均可,Beam Search,二者均不可,B
115,解决隐马模型中预测问题的算法是,前向算法,维特比算法,Baum-Welch算法,后向算法,B
116,以下对k-means聚类算法解释正确的是,"能自动识别类的个数,不是随即挑选初始点为中心点计算","不能自动识别类的个数,不是随即挑选初始点为中心点计算","不能自动识别类的个数,随即挑选初始点为中心点计算","能自动识别类的个数,随即挑选初始点为中心点计算",C
117,一般k-NN最近邻方法在的情况下效果较好,样本呈团状分布,样本较多但典型性不好,样本呈链状分布,样本较少但典型性好,D
118,一监狱人脸识别准入系统用来识别待进入人员的身份此系统一共包括识别4种不同的人员狱警小偷送餐员其他。下面哪种学习方法最适合此种应用需求,多分类问题,二分类问题,k-中心点聚类问题,层次聚类问题,A
119,为了得到和 SVD 一样的投射projection你需要在 PCA 中怎样做,将数据转换成零均值,无法做到,将数据转换成零众数,将数据转换成零中位数,A
120,在统计模式分类问题中,当先验概率未知时,可以使用,N-P判决,最小最大损失准则,最小损失准则,最小误判概率准则,B
121,以下哪些方法不可以直接来对文本分类,决策树,Kmeans,支持向量机,KNN,B