dataset-opencompass/data/cmmlu/test/high_school_mathematics.csv
2025-07-18 07:25:44 +00:00

22 KiB
Raw Blame History

1QuestionABCDAnswer
20设集合$M=\left\{ -1,0,2,8 \right\},N=\left\{x|x\leqslant 2 \right\}$ ,则 $M\cap N =${—1,0,1} {0,1,2} {0,1} {—1,0,1,2} D
31命题“若⼀个数是负数,则它的平⽅是正数”的逆命题是“若⼀个数的平⽅是正数,则它是负数”“若⼀个数不是负数,则它的平⽅不是正数”“若⼀个数是负数,则它的平⽅不是正数”“若⼀个数的平⽅不是正数,则它不是负数”A
42若数列${a_n}$的通项公式是$a_n=2(n+1)+3$则此数列是公差为5的等差数列不是等差数列是公差为2的等差数列 是公差为3的等差数列C
53在△ABC中abc分别是⻆ABC所对的边且a6b8A30°则满⾜条件的三⻆形有无数个1个0个2个D
64设$\bigtriangleup ABC$的内角ABC所对边的长分别是abc若$a^{2}=b^{2}+c^{2}-bc$则A=$2\frac{\pi}{3}$$\frac{\pi}{4}$$\frac{\pi}{6}$$\frac{\pi}{3}$D
75下列正确的是{0}=0 0属于{0} 以上都不对0真包含于{0}B
86设等比数列{a_n}的前n项的和为S_n若S_10:S_5=1:2则S_15:S_5等于2:31:31:23:4D
97某学院的ABC三个专业共有1200名学⽣为了调查这些学⽣勤⼯俭学的情况拟采⽤分层抽样的⽅法抽取⼀个容量为120的样本已知该学院的A专业有380名学⽣B专业有420名学⽣则在该学院的C专业应抽取的学⽣是 120名38名40名42名A
108已知a=log_{2}0.2, b=2^0.2, c=0.2^0.3,则a<b<cc<a<bb<c<aa<c<bD
119某校现有⾼⼀学⽣210⼈⾼⼆学⽣270⼈⾼三学⽣300⼈⽤分层抽样的⽅法从这三个年级的学⽣中随机抽取n名学⽣进⾏问卷调查如果已知从⾼⼀学⽣中抽取的⼈数为7那么从⾼三学⽣中抽取的⼈数应为9262510D
1210下列元素中属于集合{x|x=2k k是⾃然数}的是-23107C
1311在$\bigtriangleup ABC$中,$cos\frac{C}{2}=\frac{\sqrt{5}}{5},BC=1, AC=5$则AB等于$2\sqrt{5}$$4\sqrt{2}$$\sqrt{29}$$\sqrt{30}$B
1412若x\in R, 则“x>1” 是 "|x|>1"的既⾮充分也⾮必要条件充分⾮必要条件充分必要条件必要⾮充分条件B
1513在集合﹛1234…10﹜中任取⼀个元素所取元素恰好满⾜⽅程cos30°•x = 1/2 的概率为1/51/41/61/3A
1614下列求导运算正确的事(x^3)'=3x^2(x^2 cos(x))'=-2xsin(x)(x^2+1)'=2x+1(1/x)'=1/x^2A
1715已知函数$f(3x)=log_{2}\sqrt{(9x+1)/2}则f(1)的值为1/221log_{2}\sqrt{5}A
1816函数$y=log(x^{2}-1)$的定义域是$[-1,1]$$(-\infty ,-1]\cup[1,+\infty)$$(-\infty ,-1)\cup(1,+\infty)$$(-1,1)$C
1917已知集合$A={x|y=\sqrt{4-x^4}}$,集合$B={x|x>=a}$,则$A\subseteq B$的一个充分不必要条件是(-\inf,-2)[2,+\inf)(-\inf,-2](2,+?)A
2018在空间中,下列命题正确的是平⾏于同⼀直线的两个平⾯平⾏垂直于同⼀平⾯的两条直线平⾏平⾏于同⼀平⾯的两条直线平⾏垂直于同⼀直线的两条直线平⾏B
2119在正方体ABCD-A1B2C1D1中BB1与平面ACD1所成角的余弦值为\sqrt{3}/22/3\sqrt{2}/3\sqrt{6}/3D
2220圆x^2+y^2-2x-2y+1=0上的点到直线x-y=2的距离最大的是1+2\sqrt{2}21+\sqrt{2}/21+\sqrt{2}D
2321若$\sin\alpha * \cos\alpha > 0$,则\alpha在第一、四象限第一、二象限第一、三象限第二、四象限C
2422同时抛掷两枚质地均匀的硬币,则出现两个正面朝上的概率是$\frac{1}{8}$$\frac{1}{4}$$\frac{1}{2}$$\frac{1}{3}$B
2523在三角形ABC中sinA:sinB:sinC=3:2:4则cosC的值为-2/3-1/42/31/4B
2624600是数列1*2,2*3,3*4...的第25项24项 30项20项 B
2725设$z=(3-i)/(1+2i)$,则|z|=21sqrt{3}sqrt{2}D
2826设$\bigtriangleup ABC$的内角ABC所对边的长分别是abc且$f(A)=\sqrt{3}sinA-cosA+2$,若$f(A)=3,a=\sqrt{6}, S_{\bigtriangleup ABC}=\sqrt{3}$,则$\bigtriangleup ABC$的周长是$3\sqrt{3}+\sqrt{6}$$2\sqrt{2}+\sqrt{6}$$3\sqrt{2}+\sqrt{6}$$2\sqrt{3}+\sqrt{6}$C
2927已知空间直⻆坐标系中三点$A(0,1,0),M(\sqrt{2},1,0),N(0,3,\sqrt{2}),O$为坐标原点,则直线 OA 与 MN 所成⻆的余弦值为\frac{\sqrt{2}}{2}$\frac{\sqrt{6}+\sqrt{2}}{4}$$\frac{\sqrt{3}}{2}$0A
3028$\cos{\alpha}=4/5$\alpha 为第四象限角,则$\tan{\alpha}$的值为-4/3$\pm 4/3$-3/4$\pm 3/4$C
3129已知x>0, y>0, x+2y+2xy=8, 则x+2y的最小值是5.5344.5C
3230在$\bigtriangleup ABC$中若c=1$a=\sqrt{3}$$\angle A=\frac{2\pi}{3}$则b为1$\frac{\sqrt{10}}{2}$$\sqrt{7}$2A
3331函数$y=\sqrt{2x+1} + \sqrt{3-4x}$的定义域为(-\infty, 1/2](-1/2, 3/4)(1/2,0)\cup (0, \infty)[-1/2, 3/4]D
3432$cos\frac{7}{6}\pi=$$-\frac{1}{2}$$\frac{1}{2}$$-\frac{\sqrt{3}}{2}$$\frac{\sqrt{3}}{2}$C
3533$\frac{1+2i}{1-2i}$等于$-\frac{3}{5}-\frac{4}{5}i$$-\frac{4}{5}+\frac{3}{5}i$$-\frac{3}{5}+\frac{4}{5}i$$-\frac{4}{5}-\frac{3}{5}i$C
3634把函数y=sin(2x-pi/4)的图像向右平移pi/8,所得到的图像对应的函数为非奇非偶函数奇函数偶函数既是奇函数又是偶函数C
3735在12310这10个数字中任取3个数字那么“这三个数字的和⼤于6”这⼀事件是以上选项均不正确必然事件 不可能事件随机事件D
3836在锐角三角形ABC中a=1, B=2A则边b的取值范围为(sqrt(2),sqrt(3))(1,2)(2,3)(1,3)A
3937下列⼏个命题中,①两个⾯平⾏且相似,其余各⾯都是梯形的多⾯体是棱台;②有两个⾯互相平⾏,其余四个⾯都是等腰梯形的六⾯体是棱台;③各侧⾯都是正⽅形的四棱柱⼀定是正⽅体;④分别以矩形两条不等的边所在直线为旋转轴,将矩形旋转,所得到的两个圆柱是两个不同的圆柱。其中正确的有几个。2143B
4038已知{a_n}是等比数列a_2=2, a_3=1/4则公比q=2-2-1/21/2D
4139我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果。哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”如30=7+23.在不超过30的素数中随机选取两个不同的数其和等于30的概率是$\frac{1}{15}$$\frac{1}{12}$$\frac{1}{14}$$\frac{1}{18}$A
4240集合A={x|1<x<9},B={234}那么A与B的关系是A真包含于B⽆法确定B真包含于A B=A C
4341若sin(a)cos(a)=1/8且pi/4<a<pi/2则sin(a)-cos(a)=-\sqrt{3}/23/4-3/4\sqrt{3}/2D
4442设$\bigtriangleup ABC$的内角ABC所对边的长分别是abctan(A+B)=-2sinC, c=3, $\bigtriangleup ABC$的周长取值范围是$(6,3+2\sqrt{3}]$(6,9][6,9]$[6,3+2\sqrt{3}]$B
4543已知等差数列中公差为2第n项等于30且前n项之和为240则n等于17151614B
4644若(a+i)/(1-i)(a\in R)是纯虚数,则|(a+i)/(1-i)|=21-iiB
4745函数$y=sin2xcos2x$最⼩正周期是$\frac{1}{2}\pi$$\frac{1}{4}\pi$$2\pi$$6\pi$A
4846为了判断甲、⼄两名同学本学期⼏次数学考试成绩哪个稳定,通常需要知道这两个⼈数学成绩的⽅差众数频率分布平均数A
4947三角形ABC的面积是1AB=2BC=\sqrt{2}角B为钝角则AC=\sqrt{10}\sqrt{5} 12A
5048已知集合p={1,2,3,4},Q={-1,0,1},则$P\cap Q$等于{1,2}{-1,0,1,2,3,4}{1}{3,4}C
5149同时抛掷两枚质地均匀的硬币,则出现两个正⾯朝上的概率是1/81/31/21/4D
5250设三阶方程$A=[A_{1},A_{2},A_{3}]$,其中$a_[i], i=1,2,3$为A的列向量且$|A|=2$,则$|B|=|[a_{1}+3a_{2},a_{2},a_{3}]|=$60-22D
5351等差数列中a5=11, S12=186, 则a8等于18202122B
5452从一批羽毛球产品中任取一个其质量小于4.8g的概率为0.3质量小于4.85g的概率为0.32,那么质量在[4.8,4.85)g范围内的概率是0.680.380.020.62C
5553设$\bigtriangleup ABC$的内角ABC所对边的长分别是abc且$f(A)=\sqrt{3}sinA-2cos^{2}\frac{A}{2}+3$当函数f(A)取到最大值时$\bigtriangleup ABC$的形状是不确定锐角三角形钝角三角形直角三角形C
5654函数$f(x)=lnx-\frac{1}{x}$的零点所在的区间为(2,3)(3,4)(1,2)(0,1)C
5755已知向量ab满足$|a|=1,a\cdot b=-1$,则$a\cdot(2a-b)$ 等于3420A
5856在$\bigtriangleup ABC$ 中,$a=2\sqrt{2},B=\frac{\pi}{4},\angle A=\frac{\pi}{3}$则b=$\frac{5\sqrt{3}}{4}$$\frac{4\sqrt{3}}{3}$$\frac{5\sqrt{3}}{3}$$\frac{3\sqrt{3}}{2}$B
5957若回归直线的方程为$\hat{y}=2-1.5x$则变量x增加一个单位时y平均减少2个单位y平均增加1.5个单位y平均增加2个单位y平均减少1.5个单位D
6058不等式$|x(x-2)|>x(x-2)$的解集为$(2,+\infty)$$(-\infty,0)\cup(0,+\infty)$$(-\infty,0)$(0,2)D
615916汽修2班总⼈数是50其中喜欢蓝球的有21⼈喜欢⽻⽑球的有19⼈既不喜欢篮球⼜不喜欢⽻⽑球的有15⼈那么既喜欢篮球⼜喜欢⽻⽑球的有⼏⼈5人6人7人4人A
6260如果等差数列$\left\{ a_{n} \right\}$中,$a_{3}+a_{5}+a_{7}=12$,那么$a_{1}+a_{2}+...+a_{9}$的值为18365427B
6361已知$tan\alpha=\frac{1}{4},tan(\alpha-\beta)=\frac{1}{3}$,则$tan\beta=$$\frac{1}{13}$$-\frac{1}{13}$$-\frac{11}{7}$$\frac{7}{11}$B
6462已知点—4200则线段的垂直平分线的斜率为1/2-1/22-2C
6563设A={x| x>1}B={ x|x≥5},那么$A\cup B=${x|x≥1}{x|x≥5} {x| x>1} {x| x>5} C
6664人的年龄x与人体脂肪含量的百分数y的回归方程为y=0.577x-0.448如果某人36岁那么这个人的脂肪含量无任何参考数据一定20.3%在20.3%附近的可能性比较大以上解释都无道理C
6765经过点M(-2,m), N(m,4)的直线的斜率等于1则m的值为1或3141或4B
6866$f(x)=x^3-3x^2+2$在区间[-1,1]上的最大值是4102D
6967$x^2\neq y^2$是$x\neq y$且$x\neq -y$的既不充分也不必要条件充分不必要条件 充要条件必要不充分条件C
7068设$\bigtriangleup ABC$的内角ABC所对边的长分别是abc已知$a=2\sqrt{2}, cosA=\frac{\sqrt{6}}{3}, B=A+\frac{\pi}{2}$,则$\bigtriangleup ABC$的面积为$\frac{4\sqrt{3}}{3}$$\frac{4\sqrt{2}}{3}$$\frac{2\sqrt{3}}{3}$$\frac{2\sqrt{2}}{3}$B
7169袋中有5个⽩球3个红球从中任意抽取4个球恰好抽到3个⽩球的概率4/53/43/71/2C
7270下⾯⼏何体中,过轴的截⾯⼀定是圆⾯的是圆台圆柱 圆锥D
7371已知四棱锥S-ABCD的底面是中心为O的正方形且SO$\prep$底面ABCD$SA=2\sqrt{3}$,那么当该棱锥的体积最大时,它的高为$\sqrt{3}$123C
7472函数$f(x)=\pi x +log_{2}x$的零点所在的区间为[0,1/8][1/2, 1][1/8, 1/4][1/4, 1/2]D
7573若复数m(m-2)+(m^2-3m+2)i是纯虚数则实数m的值为0或2021或2B
7674复数$(i(2+i)/(1-2i))$等于-ii-11C
7775已知两条平行直线l_1: 3x-4y+a=0, l_2: 6x-8y+10=0的距离为2则a等于-5,1510,5-5,10-15,5A
7876若$\overrightarrow{a}=(x,3),\overrightarrow{b}=(x,-2)$,则“$x=\sqrt{6}$”是“$\overrightarrow{a}\bot \overrightarrow{b}$”的既不充分也不必要条件必要而不充分条件充分必要条件充分而不必要条件B
7977若回归直线的⽅程为y=2-1.5x则变量x增加⼀个单位时y 平均增加1.5个单位y 平均减少2个单位 y 平均减少1.5个单位 y 平均增加2个单位C
8078将⼀个⻓⽅体切去3个顶⻆得到的物体有多少个⾯9867A
8179已知$\tan\alpha=1/4$, $\tan(\alpha-\beta)=1/3$,则$\tan\beta=$-1/131/13-11/77/11A
8280等差数列{a_N}中,若$a_2+a_3=4$$a_4+a_5=6$,则$a_9+a_{10}=$1112109A
8381设三角形ABC的内角ABC所对边长分别是abc且b=3, c=1, A=2B则a=$\sqrt{3}$$2\sqrt{3}$2$\sqrt{3}/2$B
8482条件p:(x-2)^2<=1条件q:2/(x-1)>=1则p是q的充要条件 充分不必要条件既不充分也不必要条件必要不充分条件D
8583设$\bigtriangleup ABC$的内角ABC所对边的长分别是abc若$\angle C=120^{\circ }, c=\sqrt{2}a$,则A与B的大小关系不能确定$A\gt B$A=B$A\lt B$B
8684使$log_{2}a>log_{3}27成立的a的取值范围是(8, \inf)(9, \inf)(3, \inf)(0, \inf)A
8785投一颗骰子设A为“出现2点”B为“出现奇数点”则P(A+B)=1/65/62/31/3C
8886若椭圆$x^2/m+y^2/8=1$的焦距为2则m的值为799或169或7D
8987展开式中x的系数为$\left( x-\frac{2}{x} \right)^{5}$2054010C
9088已知幂函数y=f(x)的图像过点$(-\frac{1}{2},-\frac{1}{8})$,则$log_{2}f(4)$的值为463-6B
9189已知 $a\gt 0,a\neq 0$,则$a^{0}+log_{a}a=$12a0B
9290等⽐数列中a1=8,a2=64,则公⽐q为8342A
9391若数列{a_n}满足a_{s+1}=1-1/a_s且a_1=2则a_2010等于-113/21/2A
9492函数y=\sqrt{3-log_{2}x}的定义域为(0,9](-inf,27](0,27](-inf, 9]C
9593已知集合A={1,2,3,4}B={y|y=3x-5, x\in A},则$A\cap B$ ={1,2}{1,4}{2,4}{3,4}B
9694函数y=sin(x)^(sin(\pi/2+x) 的最小正周期是2\pi\pi/24\pi\piD
9795若A与B相似|A|=|B|AB都和同一对角矩阵相似AB都有相同的特征向量$A-\lambda E=B-\lambda E$A
9896{语⽂,数学,英语,体育}$\cup${语⽂,数学,英语,历史,地理}是{语⽂,数学,英语}空集 {历史,地理,体育} {语⽂,数学}A
9997不等式$(x^2-x-6)/(x-1)>0$的解集为(x|x<-2或x>3}{x|-2<x<1或x>3}{x|-2<x<1或1<x<3}{x|x<-2或1<x<3}B
10098设$\bigtriangleup ABC$的内角ABC所对边的长分别是abc且b=3c=1A=2B则a=2$\sqrt{3}$$2\sqrt{3}$\frac{\sqrt{3}}{2}C
10199已知复数z满足(1-i)z=2则z为-1-i1-i-1+i1+iD
102100记S_n为等差数列a_n的前n项和若a_2=3,a_3=9,则S_6为32282436D
103101已知集合$A=\left\{ (x,y)|x^{2}+y^{^{2}}\le 3,x\in Z,y\in Z \right\}$则A中元素的个数为9548A
104102复数$\frac{2i}{1-i}$1+i1-i-1+i-1-iC
105103两位到北京旅游的外国游客要与2008奥运会的吉祥物福娃5个合影留念要求排成⼀排两位游客相邻且不排在两端则不同的排法共有7204801440960D
106104已知$\Omega=\left\{ (x,y)|x+y\le 8,x\ge 0,y\ge 0 \right\},A=\left\{ (x,y)|x\le 2,y\ge 0,3x-y\ge 0 \right\}$,若向区域$\Omega$上随机投1个点P则点p落入区域A的概率为$\frac{7}{16}$$\frac{3}{4}$$\frac{3}{16}$$\frac{1}{4}$C
107105已知集合A={x|x\ge 0},B={0,1,2},则$A\cup B=B$$A={x|x\ge 0},B={0,1,2}$$B\subsetneq A$$AIB=\emptyset $C
108106使$log_{2}a>log_{3}27$成⽴a的取值范围是$(3,+\infty )$$(8,+\infty )$$(0,+\infty )$$(9,+\infty )$B
109107若⼲个棱⻓为2、3、5的⻓⽅体依相同⽅向拼成棱⻓为90的正⽅体则正⽅体的⼀条对⻆线贯穿的⼩⻓⽅体的个数是64706866D
110108函数f(x)=ln(x)-1/x的零点所在的区间为(2,3)(1,2)(0,1)(3,4)B
111109设甲x=1 ⼄:$x^{2}-3x+2=0$甲是⼄的充分条件,但不是⼄的必要条件甲是⼄的必要条件,但不是⼄的充分条件 甲是⼄的充分必要条件 甲不是⼄的充分条件,也不是⼄的必要条件A
112110若函数$f(x)=log_{2}(1+x)-log_{2}(1-x)$在[a,b]上的最大值与最小值之和恰为0则实数a,b满足-1<=a<b<=1且a+b=0-1<a<b<1且a+b=0a<b且a+b=0a=b=0C
113111在$\bigtriangleup ABC$中,$a=2, b=\sqrt{2}, \angle A=\frac{\pi}{4}$,则$\angle B=$$\frac{\pi}{6}$或$\frac{5\pi}{6}$$\frac{\pi}{3}$或$\frac{2\pi}{3}$$\frac{\pi}{6}$$\frac{\pi}{3}$C
114112在⻓⽅体$ABCD-A_{1}B_{1}C_{1}D_{1}$中$AB=BC=1,CC_{1}=2$ ,则$AC_{1}=$$\sqrt{6}$$\sqrt{2}$$\sqrt{5}$2A
115113$cos(-19\pi/6)=$-1/21/2\sqrt{3}/2-\sqrt{3}/2D
116114$(x-2/x)^7$的展开式中x^3的系数为428416821B
117115设AB为同阶可逆方阵则下列等式中错误的是|AB|=|A||B|(A+B)-1=A-1+B-1$(AB)^{T}=B^{T}A^{T}$(AB)-1=(B-1)(A-1)B
118116已知集合A={0,1,2}B={2,3},则集合$A\cup B = $ {0,1,3}{0,1,2,3}{1,2,3}{2}B
119117在三角形ABC中$a=2\sqrt{2}$$B=\pi /4$, $\angle = \pi /3$则b=$5\sqrt{3}/3$$3\sqrt{3}/2$$5\sqrt{3}/4$$4\sqrt{3}/3$D
120118下列对象不能组成集合的是本班数学成绩较好的同学不⼩于0的所有偶数直线y=2x-1上所有的点不等式x+2>0的解集全体A
121119下列函数中,既是偶函数又在区间$(0,+\inf)$上单调递增的是$y=x^2-1$$y=-x$$y=\cos(x)$$y=x^4$A
122120已知双曲线$\frac{x^{2}}{4}-\frac{y^{2}}{12}=1$上一点M的横坐标是3则点M到双曲线左焦点的距离是4$2(\sqrt{7}+1)$$2(\sqrt{7}-1)$8D
123121在等比数列$\left\{ a_{n} \right\}$中,$a_{n}\gt 0(n\in N^{*})$且$a_{4}=4,a_{6}=16$,则数列$\left\{ a_{n} \right\}$的公比q是2143A
124122若函数f(x)的图象经过(0,-1)则函数y=f(x+4)的反函数的图象经过点(-1,-4)(-4,-1)(0,-1)(1,-4)A
125123设$x,y \in R$且x+y=3则3^x+3^y的最小值是6\sqrt{3}18\sqrt{3}4\sqrt{3}0A
126124在抽查产品的尺⼨过程中,将其尺⼨分成若⼲组,[3.56)是其中的⼀组抽查出的个体在该组上的频率为0.2该组上的直⽅图的⾼为h则h为0.1 0.20.050.08D
127125下列函数中,周期是$\pi$,且在$[0,\pi/2]$上的减函数是$y=\sin(2x)$$y=\cos(2x)$$y=\sin(x+\pi/4)$$y=\cos(x+\pi/4)$B
128126已知$\tan\alpha=-3$, 则$\sin2(\alpha+\pi/4)=$3/5-4/54/5-3/5B
129127已知三角形ABC的内角ABC的对边分别为a,b,c若a^2=b^2+c^2-bc则A=pi/3pi/62pi/3pi/4A
130128集合A={1,2,3,4}的真⼦集个数为15101114C
131129下列向量中与a=(1,1,-1)正交的向量是$a_{2}=(-1,1,1)$$a_{1}=(1,1,1)$$a_{4}=(0,1,1)$$a_{3}=(1,-1,1)$C
132130⽅程$x^2+2x-8=0$的解集⽤列举法表示为{2,-4}-4 ,2 {4,-2} 4,-2A
133131如果在等差数列{a_n}中a_3+a_4+a_5=12那么a_1+a_2+a_3+…+a_7=28211436A
134132$\bigtriangleup ABC$ 中若a=2, b+c=7, cosB=-1/4则sinA=$\frac{3}{4}$$\frac{5}{8}$$\frac{\sqrt{15}}{8}$$\frac{\sqrt{5}}{4}$C
135133设lm是两条不同的直线$\alpha$是一个平面,则下列命题正确的是若$l//\alpha, m\subset \alpha$,则$l// m$若$l//\alpha, m//\alpha$,则$l// m$若$l\bot m, m\subset \alpha$,则$l\bot \alpha$若$l\bot \alpha, l//m$,则$m\bot \alpha$D
136134计算机执行 a=8, b=5, a=a+b, b=a-b, print a,b 程序段后,输出的结果为8,513, 83, 1313, 3 B
137135下列函数中,为偶函数的是$y=log_{3}{x}$$y=3x^{2}-1$$y=x^{3}-3$$y=3^{x}$B
138136双曲线$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 (a\gt 0, b\gt 0)$的离心率为$\sqrt{3}$,则其渐近方程为$y=\pm \frac{\sqrt{2}}{2}$$y=\pm \sqrt{2}x$$y=\pm \sqrt{3}x$$y=\pm \frac{\sqrt{3}}{2}$B
139137若x>0,y>0且1/x+9/y=1则x+y的最小值是16131220A
140138y=log_{3}(6-x-x^2)的单调递减区间为[-1/2,inf)(-inf,-1/2](-3,1/2][-1/2,2)D
141139我省⾼中学校⾃实施素质教育以来,学⽣社团得到迅猛发展.某校⾼⼀新⽣中的五名同学打算参加“春晖⽂学社”、“健身俱乐部”、“篮球之家”、“围棋苑”四个社团.若每个社团⾄少有⼀名同学参加,每名同学必须参加且只能参加⼀个社团,且同学甲不参加“围棋苑”,则不同的参加⽅法的种数为18010872216A
142140过圆锥的⾼的三等分点作平⾏于底⾯的截⾯,它们把圆锥侧⾯分成的三部分的⾯积之⽐为124135 139123 B
143141集合A={12,3, 4, 5},集合B={x| x2=9}A∩B是{ 2, 3, 5} {3} { -3 3, } { 12, 3} B
144142已知f(x)是定义域为$(-\infty ,+\infty )$的奇函数满足f(1-x)=f(1+x)。若f(1)=2则f(1)+f(2)+f(3)+...+f(50)等于-500250C
145143已知定义在R上的偶函数f(x)满足f(4+x)=f(x),且在区间[0,2]上是增函数那么f(0)<0是函数f(x)在区间[0,6]上有3个零点的充分⽽不必要的条件 既不充分也不必要的条件充要条件 必要⽽不充分的条件D
146144若向量 a=(1,m)b=(-2,4) ,且 a*b=-10则m=-2-441A
147145在长方体$ABCD-A_{1}B_{1}C_{1}D_{1}$中AB=BC=1$AA_{1}=\sqrt{3}$,则异面直线$AD_{1}$与$DB_{1}$所成角的余弦值为$\frac{1}{5}$$\frac{\sqrt{5}}{6}$$\frac{\sqrt{2}}{2}$$\frac{\sqrt{5}}{5}$D
148146已知双曲线 x^2/4-y^2/12=1 上的一点M的横坐标是3则点M到双曲线左焦点的距离是42(\sqrt{7}-1)82(\sqrt{7}+1)C
149147若f(x)=cosx-sinx在[-a,a]上是减函数则a的最大值是$\frac{3\pi}{4}$$\frac{2\pi}{2}$$\frac{\pi}{4}$$\frac{\pi}{2}$C
150148设$\bigtriangleup ABC$的内角ABC所对边的长分别是abc若$b cosC+ccosB=2asinB, a^{2}+c^{2}-b^{2}=6$,则$\bigtriangleup ABC$的面积为$\frac{\sqrt{3}}{3}$$\frac{4\sqrt{3}}{3}$$\frac{8\sqrt{3}}{3}$$\frac{\sqrt{3}}{2}$D
151149已知幂函数y=f(x)的图像过点(-1/2,-1/8)则log2 f(4)的值为-6643B
152150在空间中,下列命题正确的是平行与同一平面的两条直线平行垂直与同一直线的两条直线平行垂直与同一平面的两条直线平行平行与同一直线的两个平面平行C
153151⽤性质描述法表示第⼀象限的所有点的集合{(x,y)|x<0,y>0}{(x,y)|x<0.y<0}{(x,y)|x>0,y>0}{(x,y)|x>0,Y<0} C
154152椭圆x^2/4+y^2=1的焦点坐标为(0,\pm\sqrt(2))(\pm\sqrt(3), 0)(0, \pm\sqrt(3)/2)(\pm\sqrt(3)/2, 0)B
155153⽤性质描述法表示全体偶数{x|x=2k} {x|x=2k+1} {x|x=2k K是⾃然数}{x|x=2K,K是正整数} C
156154若直线x+y+m=0与圆$x^{2}+y^{2}=m$相切则m=2$\sqrt{2}$无解0或2A
157155抛物线y^2=10x的焦点到准线的距离是15/2105/25D
158156已知函数$f(x)=ln(x)+ln(4-x)$,则f(x)在(0,4)单调递减y=f(x)的图像关于直线x=2对称f(x)在(0,4)单调递增y=f(x)的图像关于点(2,0)对称B
159157设$\bigtriangleup ABC$的面积是1$AB=1, BC=\sqrt{2}, \angle B$为钝角则AC=2$\sqrt{10}$$\sqrt{5}$1B
160158对任意实数a(a>0, a\neq 1)函数f(x)=a^{x-1}+3的图像必经过点(2,5)(5,2)(4,1)(1,4)D
161159已知一个等差数列的首项为1公差为3那么该数列的前5项和为35203010A
1621602位男⽣和3位⼥⽣共5位同学站成⼀排若男⽣甲不站在两端3位⼥⽣中有且只有两位⼥⽣相邻则不同的排法总数共有42366048D
163161设全集U={abcdef}A={ace}那么CuA={a,b,c,d,e,f} 空集{a,c,e} {b,d,f} D
164162在三角形ABC中若a=2, b+c=7, cosB=-1/4则sinA=\sqrt{5}/4\sqrt{15}/85/83/4B
165163已知不等式|x-m|<1成立的充分不必要条件是1/4<x<1/2则实数m的取值范围是[-1/2,5/4](-1/2,5/4)[-5/4,1/2][5/4,+inf)A